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SUMMARY 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

The theory  of operat ion of, and the  experimental  resu l t s  obtained from, 
two types of mass spectrometer, t h e  massenfilter and the  omegatron, are pre-  
sented. It i s  concluded t h a t  the  massenfi l ter  e x h i b i t s  some s ign i f i can t  ad- 
vantages over the  omegatron as wel l  as  o ther  types of mass spectrometers 
previously used i n  upper-atmosphere research. 
these advantages include s impl i c i ty  of construct ion,  a b i l i t y  t o  operate t o  
higher  dens i t i e s ,  and operat ion which i s  r e l a t i v e l y  independent of ion ic  
energies .  This  l a t t e r  leads t o  spectra  uniquely r e l a t e d  t o  the  gas under 
ana lys i s  and i n t e r p r e t a t i o n  of r e su l t s  i s  s implif ied.  Elimination of t h e  
magnetic f i e l d  reduces weight as compared with t h e  omegatron and conventional 
spectrometers. Obtainable s e n s i t i v i t y  i n  terms of ion current  pe r  un i t  pres-  
s u r e  and un i t  e l ec t ron  beam current  should be comparable t o  the  Bennett t u b e .  

A t  comparable reso lu t ions ,  

Inasmuch as one of t he  object ives  i s  t o  measure the  ex ten t  of d i ssoc ia-  
t i o n  i n  the  ambient atmosphere, it is  necessary t o  e l iminate  c o l l i s i o n  pro- 
cesses  with t h e  apparatus i n  which recombination i s  l i k e l y  t o  occur. A pre-  
l iminary ion source design f o r  t h e  massenfi l ter  i s  described i n  which t h i s  
p robab i l i t y  is reduced t o  an acceptable value. 

A separable instrument package, designed t o  avoid outgassing and recom- 
b ina t ion  problems, i s  described. 

PURPOSE 

The purpose of t he  research as se t  f o r t h  i n  the  contract  i s  t o  conduct a 
" spec ia l  i nves t iga t ion  f o r  development of rocket instrumentation packages f o r  
measuring the  proper t ies  of t he  upper atmosphere." By mutual agreement with 
NASA s c i e n t i s t s ,  t h i s  broad objective has been more s p e c i f i c a l l y  def ined t o  
develop instrumentation capable of y ie ld ing  pressure,  temperature, densi ty ,  
and zoq?osit,i_on da ta  i n  the  range of from 100-200 kilometers. It is  f u r t h e r  
unde rs t ood t h a t  : 

a. Composition measurements i n  s u f f i c i e n t  d e t a i l  t o  y i e ld  mean molec- 
u l a r  weight are required,  t h e  d e t a i l s  of d i s soc ia t ion  of oxygen and 
n i t rogen  are highly desirable, and the  r e l a t i v e  abundance of t he  
minor cons t i tuents  need not be an i n i t i a l  object ive.  

b. Synoptic capab i l i t y  I s  a primary objec t ive .  

x i  



1. INTRODUCTION 

This report  summarizes the progress of t he  upper-atmosphere research pro  j- 
e c t  ca r r i ed  out by the Department of Aeronautical and Astronaut ical  Engineering 
of The University of Michigan i n  fu l f i l lmen t  of National Aeronautical  and Space 
Administration Contract No. NASw-4 with The Universi ty  of Michigan Research In-  
s t i t u t e .  
The cont rac t  w a s  executed '  about 1 December 1958 at  which time t echn ica l  work 
began. This report  presents  new mater ia l  as wel l  as materials covered i n  a 
mmorandum report  of June, 1959, and l e t t e r  repor t s  t ransmi t ted  3 September 
1959 and 23 October 1959. 

The f i r s t - y e a r  cont rac t  period was 27 October 1958 t o  1 November 1959. 

1 



2. BACKGROUND 

A s  a r e s u l t  of rocket measurements made s ince  1946 and p a r t i c u l a r l y  dur- 
ing  the  I G Y  aboard a v a r i e t y  of rockets, t he  phys ica l  s t ruc tu re  of t he  atmos- 
phere-pressure, temperature, densi ty ,  and composition-is genera l ly  known t o  
an a l t i t u d e  of 90 km. Synoptic var ia t ions  and a few s p e c i a l  phenomena r e l a t e d  
t o  s t ruc tu re ,  such as ozone and wind systems, a r e  not as wel l  known. However, 
it i s  genera l ly  agreed t h a t  s a t i s f ac to ry  techniques f o r  obtaining more syn- 
op t i c  d a t a  are ava i lab le .  Many organizations have gathered such da ta  and the  
High Alt i tude  Engineering Laboratory in  the  Department of Aeronautical  and 
Astronaut ical  Engineering of The University of Michigan has been a s ign i f i can t  
cont r ibu tor .  

Above 90 km, however, the  s i t u a t i o n  i s  far d i f f e ren t .  The mean free 
pa th  becomes the  same order  of magnitude as the  dimensions of t he  rocket-borne 
instruments. Measurements of t he  s t r u c t u r a l  parameters based on aerodynamic 
flow theory  become subject  t o  la rge  e r r o r  or become completely unworkable. 
Drag cannot be measured with present  techniques except by in t eg ra t ion  of long- 
term e f f e c t s ,  acous t i ca l  energy cannot be coupled t o  the atmosphere, and out- 
gassing of the  instruments and vehicle can e a s i l y  overwhelm the  parameters un- 
d e r  inves t iga t ion .  I n  addi t ion,  d i ssoc ia t ion  of oxygen and nitrogen-which 
makes composition measurement so important-often introduces la rge  e r r o r s  i n  
these  measurements due t o  recombination. 

U n t i l  the  advent of s a t e l l i t e s ,  v i r t u a l l y  no measurements of d e n s i t i e s  
i n  the  region 200 km and beyond existed.  Severa l  po in ts  were obtained by 
s a t e l l i t e s  and are compared i n  Fig. 1 wi th  dens i t i e s  obtained from the AEDC 
Model Atmosphere, 1956.l 
those t h e o r e t i c a l l y  obtained by nearly a f a c t o r  of 10 and the  discrepancy in -  
c reases  wi th  a l t i t u d e .  Fur ther  u s e  of dens i ty  da t a  t o  der ive pressures  and 
temperatures requires  a knowledge of mean molecular weights. Figure 2 i l l u s -  
t r a t e s  t he  wide discrepancy i n  these  values obtained from the  ARDC Model A t -  

and from measurements taken by NRL.5 
of t h e  va r i a t ions  are real. Nevertheless, t h e  need f o r  more and independent 
d a t a  i n  an e f f o r t  t o  resolve the  ambiguities i s  self-evident .  The research 
sponsored under t h i s  contract  i s  d i rec ted  toward cont r ibu t ing  da ta  i n  these 
a reas .  

The measured values a t  200 km are seen t o  exceed 

mosphere, from Whitney's Model2 based on the  theo r i e s  of Chapman3 and Nicolet ,  4 
It i s  t o  be expected, of course, t h a t  some 

3 
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Fig.  1. 
d e n s i t i e s .  Also shown are some v e r t i c a l  rocket  po in ts  obtained by var ious 
methods. 

S a t e l l i t e  d e n s i t i e s  as a func t ion  of a l t i t u d e  compared with ARDC 

W (winter,  S (summer), D (day) ,  N ( n i g h t ) .  
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3. APPROACH 

The f o u r  parameters of i n t e r e s t  i n  t h i s  inves t iga t ion ,  P, T,  p, and M, 
are independently r e l a t ed  by the  equation of s t a t e  and by the  hydros ta t ic  
equation. Measurement of any two, therefore ,  i s  s u f f i c i e n t  t o  ca lcu la te  the  
remaining unknowns. The e a r l y  e f for t  of the  p ro jec t  w a s  d i r ec t ed  toward a 
s e l e c t i o n  of the p a r a m t e r s  t o  m e a s u r e  and the bas ic  methods by which t o  
perform these measurements. The an t ic ipa ted  range of these parameters and 
of others  c lose ly  r e l a t e d  was  obtained from Ref. 1 as follows: 

STRUCTURAL PARAMETERS OF THE ATMOSPHERE 

Pres su re  (mm Hg) 
Density ( kg/m3) 

Temperature ( O K )  

Mean molecular weight 

0 km 

760 
1.225 

288.16 
28.966 

Mean f r e e  path (em) 6.63 x lo-" 
Number dens i ty  (no./m3) 2.55 

Average p a r t i c l e  speed (m/sec) 458.9 

100 km 200 km 

3.46 2.20 
7.12 1.11 10-l~ 

207 712 
26.48 22.36 

10.43 5.65 x io4 
1.62 ioLs 2.99 1015 

407 821 

Various methods of rneasuring pressure ,  mass densi ty ,  temperature, mean 
molecular weight, and number densi ty  were considered. I n  the  range of values 
given by Table I, it w a s  concluded t h a t  measuremnts of the number of mole- 
cu les  pe r  u n i t  volume (he rea f t e r  ca l led  p a r t i c l e  dens i ty )  using a n  ion iza t ion  
gage and measurement of composition by i n - f l i g h t  mass spectrometry w a s  the  
bes t  approach. 
mass dens i ty  from which temperature and pressure can be calculated.  

These two s e t s  of data w i l l  y i e ld  mean molecular weight and 

Severa l  instruments capable of i n - f l i g h t  mass spectrometry were con- 
s idered.  Included were the d ia t ron  (similar i n  p r inc ip l e  t o  the  conventional 
mass spectrometer) ,  the  Bennett and Bendix t ime-of-f l ight  mass spectrometers, 
t he  omegatron, and, at a l a t e r  date,  the P a u l  Massenfi l ter .  O f  these,  the  
P a u l  Massenf i l te r  has been se lec ted  as the instrument most adaptable t o  the 
requirements of the  contract .  

7 



4. MASSENFILTER 

4.1. PRINCIPLE OF OP?iWII'ION 

6 The massenfi l ter ,  described by Paul e t  al., separates  ions by exposing -- 
them t o  an e l e c t r i c  f i e l d  which i s  a l i n e a r  func t ion  of t he  coordinates .  The 
p o t e n t i a l  of such a f i e l d  i s  expressible i n  the  form, 

(4.1.1) 2 2 
= Vo (ax2 + by + cz ) vx, Y, z 

where a + b + c = 0 s ince  the  LaPlacian of  a f i e l d  i n  charge-free space must 
vanish. I n  the  massenf i l te r  design, P a u l  s e t s  a = -b = 1/Ro2, c = 0. 
f i e l d  i s  produced exac t ly  by hyperbolic e lec t rodes  arranged 90" apa r t .  A c lose 
approximation out t o  R = 0.8 RO7 i s  provided by c y l i n d r i c a l  e lec t rodes  (Fig.  3 )  
when Rrod/Ro = 1.16 and the  operating vol tages  are given by 

Such a 

vox = u + v cos ut 

I yoy = - vox 
. I 

(4.1.2) 

(4.1.3) 

F ig .  3. Circular  e lec t rode  arrangement. 

The p o t e n t i a l  a t  any poin t  of t he  f i e l d  i s  given by 

( x2 -y2 1 
R02 

= (u + v cos u t )  
vX> Y (4 .1 .4)  

9 



and t h e  equations of motion of a s ingly  charged ion  a re  

For f ixed  values of Ro, o, u, and V, (4.1.9) and (4.1.10) show t h a t  the  work 
I point  of an ion  i s  determined only by m/e. Since t h e  r a t i o  a/q = 2 U/V i s  inde- 

pendent of mass, a l l  ions l i e  on a l i n e  through t h e  o r ig in ,  t h e  s lope of which 
i s  given by 2 U/V. For values of a/q < 0.237/0.706 = 0.336, t h i s  l i n e  i n t e r s e c t s  

10 

X m x  + 2e ( U  + v cos c u t )  7 = O 
RO 

(4.1.5)  

mj; - 2e (U + v cos c u t )  + = o (4.1.6) 
R O  

mi’ = 0 (4.1 -7) 

Equation (4.1.7) merely ind ica tes  the  z-component of ve loc i ty  is  constant .  
s t i t u t i o n  of t he  r e l a t i o n s  

Sub- 

c u t  = 25 (4.1.8) 

8 e ~  
mRo2 u 9  a =  

4 e ~  
q =  mRo2 cu2 

transforms Eqs. (4.1.5) and (4.1.6) t o  

( 4.1.10) 

(4.1.11) 

(4.1.12 ) 

Both of these equations a re  Mathieu d i f f e r e n t i a l  equations.  The so u t ion  of 
e i t h e r  of these y ie lds  a complicated a-q p l o t  of s t a b i l i t y  regions.  ‘ j 8  Within 
these regions x (or y )  remain bounded as 5 + 00 while outs ide these regions,  x 
(or y )  -t OJ as 5 -f 03. For an ion  t o  be stabxe, both t h e  x and y components of 
motion must remain bounded. Hence both working poin ts  ax, qx and ay, qy [ =  -ax, 
-qx from Eqs. (4 .1 .11)  and (4.1.12)]  must l i e  i n  s t a b l e  regions.  Reflect ing the  
s t a b i l i t y  diagram about t h e  q-axis r e s u l t s  i n  the  composite s t a b i l i t y  diagram 
of Ref. 6 (Fig.  4 )  wherein both conditions f o r  s t a b i l i t y  a r e  met simultaneously. 
I n  addi t ion  t o  the region i l l u s t r a t e d  i n  Fig.  4, another s m a l l  region exists a t  
high values of a and q and a t  a high value of a/q. This s m a l l  region has not 
been invest igated s ince  it leads  t o  imprac t ica l ly  l a r g e  vol tages  f o r  t he  heavy 
gases. 
i n  other  appl icat ions.  

It may, however, be qu i t e  usefu l  f o r  t h e  ana lys i s  of  hydrogen and helium 
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t he  t r i a n g l e  of Fig.  4. 
t e r cep t  po in ts  (qlq2) a re  s t a b l e .  
moved toward the  apex of t he  triangle and the  in t e rcep t  range can be made as nar- 
row as des i red  u n t i l  the  l i n e  no longer i n t e r s e c t s  t he  t r i a n g l e  and nothing is  
s t a b l e .  
r a t i o  agrees w i t h  the  t h e o r e t i c a l  p red ic t ion  within t h e  l i m i t s  of observational 
accuracy. 

Only those ions whose work point  l i e s  between the in -  
By increasing 2 U/V, t h e  in t e rcep t s  can be 

It w i l l  be shown la ter  t h a t  experimental determination of t h i s  marginal 

Not only must an ion  be s t a b l e  by the  de f in i t i ons  given above ( i . e . ,  x and y 
are bounded as 5 -t a), but i t s  amplitude of o s c i l l a t i o n  must remain smaller than 
Ro so  t h a t  it can reach the  co l l ec to r  without first impinging on one of the rods.  
As reso lu t ion  i s  increased, we move c loser  t o  the  apex of t he  s t a b i l i t y  diagram 
(Fig. 4 )  and any work point  within l i e s  c lose r  t o  the  s t a b i l i t y  boundaries. Thus 
the  m a x i m u m  excursion amplitude of an ion grows with resolut ion,  o ther  f a c t o r s  
remaining the  same. TIE rraximum excursiDn mplitude s depend also on the i n i t i a l  injection 
conditions,  xo, yo, k, io, and uto. As the  working poin t  moves i n t o  t h e  s t a b l e  
region, an increase of co l l ec to r  ion  current  with d is tance  from the  nearest  sta- 
b i l i t y  l i m i t  OCCVTS s ince ions which en ter  f a r t h e r  of f  t he  axis progressively 
reach the  co l l ec to r .  
r e n t  decreases.  
tween the s t a b i l i t y  in te rcepts ,  the i n i t i a l  conditions must be l imi ted .  
l i m i t a t i o n  obviously becomes more severe as t h e  r e so lu t ion  is  increased. 
gives r i s e  t o  two possible  modes of operation: 

As  t h e  second s t a b i l i t y  l i m i t  i s  approached, t he  i o n  cur- 
To achieve 106 transmission of t h e  s t a b l e  ions somewhere be- 

This 
Such 

a. Low resolving power i n  which the spec t r a l  peaks appear as t rapezoids  
Amplitude i s  independent of resolving with a f l a t  top  and 100$ transmission. 

power. 

b .  High resolut ion i n  which the  peaks approach t r i a n g l e s  and t h e i r  ampli- 
tude becomes inversely proport ional  t o  resolving power. 

4.2.  DESIGN EQUATIONS 

I n  the  case o f  t h e  massenfi l ter ,  reso lu t ion  i s  def ined as the  r a t i o  m/Am 
(= - q f A q )  where Am i s  taken a t  half-amplitude. For lo& transmission and low 
resolut ion,  base width and half-amplitude width a r e  near ly  t h e  same due t o  t h e  
f l a t - t o p  and steep s ides .  By geometric construct ion near t he  apex of t h e  sta- 
b i l i t y  diagram of Fig.  4, Paul shows t h a t  

(4.2.1) 

where ao.706 i s  the ordinate  of  t he  working poin t  when q = 0.706. For high 
resolut ion,  where the  peaks a r e  near ly  t r i angu la r ,  t h e  value of Am at  ha l f -  
amplitude i s  approximately ha l f  t h a t  a t  the  base and, by the  foregoing d e f i n i -  
t ion ,  the  reso lu t ion  i s  twice t h a t  given by aq. (4 .2 .1) .  
t h a t ,  

Paul f u r t h e r  shows 
f o r  in jec t ion  p a r a l l e l  t o  t h e  axis ,  t h e  optimum i n l e t  po r t  diameter i s  



given approximately by  

(4.2.2) 

A t  t h i s  value of i n l e t  po r t  diameter, 100$ transmission should j u s t  be r ea l i zed  
when t h e  work point  is  equidis tant  f r o m  the  s t a b i l i t y  l i m i t s  (Fig.  4). I n  addi- 
t ion ,  f o r  those ions in j ec t ed  on the axis, it i s  shown t h a t  the  maximum permis- 
s i b l e  r a d i a l  ve loc i ty  f o r  a s t ab le  ion is  given by 

XomaxJ 'omax = 0.16 Row- (4.2 -3) 

It should be noted t h a t  Eqs. (4.2.2) and (4.2.3) a re  mutually exclusive, i . e . ,  
f o r  an i n l e t  po r t  diameter given by Eq. (4.2.2), the  value of Eq. (4.2.3) must 
be zero and vice versa .  Hence, i f  an i n l e t  por t  i s  designed according t o  t h e  
c r i t e r i a  given by these equations, the r ea l i zab le  reso lu t ion  of t h e  massenfi l ter  
will be somewhat l e s s  than the design value.  Further,  the  reso lu t ion  used i n  
these equations, and i n  those t o  follow, i s  based on the  width of t h e  peak a t  
half  amplitude and, f o r  t he  t r iangular  peaks obtained up t o  106 transmission, 
i s  therefore  twice t h e  value given by Eq.  (4.2.1). 

To be exc i ted  t o  an amplitude grea te r  than Ro, an  unstable ion  must res ide 
within the  four-pole f i e l d  f o r  a minimum number of cycles,  n, of  t he  dr iv ing  
frequency. The number of cycles is  dependent on the resolving power. This num- 
ber has been experimentally determined around a reso lu t ion  of  100 and i s  given 
by Paul as approximately 

n = 3.5 dm/Am (4.2.4) 

Based on Eq. (4.2.4), one can determine the  maximum ion  i n j e c t i o n  ve loc i ty .  
the apex coordinates of t he  s t a b i l i t y  diagram of Fig.  4 where a = 0.237 and q = 

0.706 and from Eqs. (4.1.9) and (4.1.10), a f t e r  conversion t o  p r a c t i c a l  un i t s ,  
it follows t h a t  

From 

v = 7.22 u2 v o l t s  peak (4.2.5) 

where 

A = atomic mass number, 
f = frequency i n  megacycles, and 
Ro = f i e l d  radius  i n  em. 

Also 

2u 0.336 = - 0.237 - - =  a - -  
c l  0.206 v (4.2.6) 
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Hence 

U = 0.168~ = 1.21  M2 Ro2 v o l t s  (4.2 - 7 )  

Using Eq. (4 .2 .3)  and subs t i t u t ing  from Eq. (4.2.5),  the maximum permissi-  
b l e  r a d i a l  energy for focusing of s t ab le  ions in j ec t ed  on the  ax i s  i s  given ap- 
proximately by 

- e lec t ron  v o l t s  
'R - 15 ( m b )  

(4.2.8) 

U s i n g  Eq. (4 .2 .4) ,  it can be shown t h a t  t h e  m a x i m u m  voltage through which the 
ions can be accelerated p r i o r  t o  in j ec t ion  i n t o  the  f i e l d  i s  

= 0.042 A L2f2 $ v o l t s  'inma, 

where 

L = length of four-pole f i e l d  i n  em, and 
f = driving frequency i n  megacycles. 

(4 .2 .9)  

An acce lera t ing  voltage grea te r  than Vinmax as given by Eq. (4.2.9) will r e s u l t  
i n  a shor te r  residence time than required t o  undergo the  number of cycles given 
by Eq. (4 .2 .4 ) .  Hence, under these conditions,  all unstable ions w i l l  not be ex- 
c i t e d  t o  an amplitude equal t o  or grea ter  than Ro with r e s u l t a n t  decrease i n  e f -  
f ec t ive  resolut ion.  

Because of the  f i e l d - f r e e  space there in ,  ion  paths  through t h e  i n j e c t i o n  
por t  are s t r a igh t  l i n e s .  From the  foregoing, it should be designed t o  l i m i t  t he  
maximum ion  e x i t  angle.  The value of t h i s  angle can be shown t o  be 

- R V 
T a n 0  = - - 

v in  'in 
(4.2.10) 

where 

VR = r a d i a l  veloci ty ,  
vin = axial veloci ty ,  and 
WR is  obtained from Eq. (4.2.8) and Vin from Eq. (4 .2 .9 ) .  

From Eqs . (4.2.5 ) and (4 .2 .6) ,  one can see t h a t  a mass sweep can be r ea l i zed  
by sweeping e i t h e r  frequency or voltage,  maintaining the  r a t i o  of U/V constant .  
Since a vol tage sweep i s  simpler t o  obta in  and y ie lds  a l i n e a r  mass sca le  f o r  a 
l i n e a r  voltage sweep, t h i s  has been the  method se l ec t ed  i n  all subsequent work. 

Final ly ,  except f o r  changes i n  charge which might be experienced, t he  ten-  
dency of an ion  t o  be s t ab le  or unstable i s  not changed t o  a first approximation 
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by small-angle sca t t e r ing  due t o  co l l i s ion  with r e s idua l  gas molecules. Thus, 
t h e  massenfi l ter  can reasonably be expected t o  operate  up t o  r e l a t i v e l y  high 
pressures .  I n  Ref. 6, Paul i l l u s t r a t e s  the  CH3 peaks obtained a t  pressures of 
8.5 x 
seen i n  an apparatus i n  which the  t o t a l  l ength  of ion  path between c rea t ion  and 
co l l ec t ion  w a s  approximately 160 em, approximately t e n  times the  length  of the  
f l i g h t  design t o  be described. 

mm Hg and 6.5 x mm Hg. No s i g n i f i c a n t  change i n  shape can be 

4.3. DESIGN AND DESCRIPTIOU OF LABORATORY MASSENFILTER 

Since reso lu t ion  as defined i n  the previous sec t ion  r e f e r s  t o  the half-am- 
p l i t ude  width of t h e  peak, a design value of 40 w a s  chosen. 
an equivalent value of 20 a t  the  base of t h e  t r i angu la r  peak t h e o r e t i c a l l y  ob- 
ta ined  when reso lu t ion  i s  at the  l imi t ing  value f o r  106 transmission. 
t ion ,  t h i s  value provides f o r  a small adjustment t o  achieve 100% transmission f o r  
those ions simultaneously a t  t h e  maximum values of both Eqs. (4 .2 .2)  and (4 .2 .3) .  
The maximum peak a-c voltage was  a r b i t r a r i l y  se lec ted  a t  500 v o l t s  ( f o r  mass 46) 
and the rod length w a s  se lec ted  a t 1 2 . 7 5  em (5 i n . ) .  I n  addition, t h e  ion in j ec -  
t i o n  voltage was se l ec t ed  a t  45 v o l t s  t o  avoid d i f f i c u l t i e s  involved with control-  
l i n g  low-energy ion  t r a j e c t o r i e s  and s t i l l  keep t h e  dr iv ing  frequency as low as 
possible .  Subs t i tu t ing  the  se lec ted  values of i n j e c t i o n  voltage,  length,  and 
r e so lu t ion  i n t o  Eq. (4 .2 .9) ,  we f ind ,  for mass 46, an operating frequency of 2.39 
Me. I n  Section 4 . 1  it was  
noted t h a t  a r a t i o  Rrod/R0 = 1.16 yielded the  c loses t  approximation t o  t h e  i d e a l  
hyperbolic f i e l d .  
missible  r a d i a l  energy of 0.833 electron v o l t s  and Eq. (4.2.10) shows Tan 8 = 
0.136 or 8 = 7.75". 
port ,  t h e  i n i t i a l  design l imi t ed  the  in j ec t ion  angle t o  about 5.25". 
Eq. (4.2.2) gives an i n j e c t i o n  por t  diameter of 0.081 cm (0.032 i n . ) .  
t i a l  design parameters are grouped below i n  Table 11. 

This corresponds t o  

I n  addi- 

Using Eq.  (4.2.5),  an Ro of 0.512 em i s  obtained. 

Thus Rr0d i s  0.595 cm. Equation (4.2.8)  y ie lds  a m a x i m u m  per-  

A s  p a r t i a l  compensation f o r  f i n i t e  dimension of t h e  i n l e t  
F ina l ly ,  

The i n i -  

The following comments on t h i s  design may be made, based on the  foregoing 
discussion.  F i r s t ,  s ince  t h e  in te rcept  range on the s t a b i l i t y  diagram i s  inde- 
pendent of m a s s ,  t h e  ul t imate  resolut ion based on t h i s  consideration i s  constant 
f o r  a l l  gases.  Secondly, t h e  combination of L, Vin, and f were obtained f o r  a 
mass number of 46. Lower masses w i l l  therefore  spend l e s s  time and a fewer num- 
ber of rf cycles within t h e  f i e l d .  Hence one must operate fu r the r  from t h e  sta- 
b i l i t y  l i m i t  t o  remove a l l  unstable i o n s .  The p r a c t l c d  e f f e c t  i s  t o  reduc? the  
e f f e c t i v e  r e so lu t ion  of t h e  l i g h t e r  masses somewhat. However, t h i s  e f f e c t  should 
be acceptable s ince  lower reso lu t ion  of the  l i g h t e r  masses i s  to l e rab le .  F ina l ly ,  
because in j ec t ed  ions can have both an i n i t i a l  r a d i a l  component o f  ve loc i ty  and 
a31 i n i t i a l  displacement off the axis,  t h e  i n t e rcep t  range on the  s t a b i l i t y  diagram 
may have t o  be increased s l i g h t l y  above design values t o  achieve 100% transmission. 

A l abora to ry  massenfi l ter  designed according t o  the parameters of Table I1 
w a s  constructed and i s  shown schematically i n  Fig.  5.  Two tungsten fi laments,  
connected i n  p a r a l l e l ,  a r e  used as the e l ec t ron  source. I n  t y p i c a l  operat ion a t  



TABLE I1 

INITIAL DESIGN PARAMETERS 

Quantity Symbol Value 

Mass number 
Resolution 
Peak dr iv ing  voltage 
Length of f i e l d  
Ion in j ec t ion  voltage 

Frequency 
F i e l d  radius  
Rod radius  
Number of cycles 
Maximum radial energy 

M a x i m u m  in j ec t ion  angle 
I n j e c t i o n  port  diameter 

A 
m/Am 
v 
L 
Vin 

R O  

wR 

Din 

f 

Rrod 
n 

0 

46 
40 
500 v o l t s  
12.75 ern 
45 v o l t s  

2.39 Me 
0.512 cm 
0.595 cm 
22 
0.833 e lec t ron  v o l t  

7.75" (5.25" used) 
0.081 ern (0.032 i n . )  

ELECTRON OR1 F I CE 
IONS CREATED IN THIS VOLUME 

FILAMENT SHIELD\ ION DRIFT GRID 

FI LAMENT ION ORIFICE \ - COLLFCTOR ---- --.-.. 
INJECTION PORT 

- TO ELECTROMETER N "  
I -II 7 I 1  \ 

LRODS 

u+v cos u t  

-(U+V cos ut) 

45 v A 
Fig.  5 .  Massenf i l t e r  schematic. 
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6 vol t s ,  the  t o t a l  f i lament current  i s  3 amperes and t h e  t o t a l  emission cur ren t  
i s  between 2 and 3 milliamperes. Electrons are accelerated toward t h e  o r i f i c e s  
i n  the  "hat" s t ruc tu re  which surrounds the  ionizing volume by v i r tue  of the  f i e l d s  
created by the  b a t t e r y  i n  Fig.  5 which i s  t y p i c a l l y  45 v o l t s .  This appears t o  be 
a reasonable compromise between peak ionizat ion e f f i c i ency  and a l o w  enough e lec-  
t r o n  energy t o  keep double ion iza t ion  negl igible .  
ion  acce lera t ing  f i e l d s .  

The same b a t t e r y  produces the  

The sh ie lds  behind the  f i laments  help d i r e c t  t he  emitted e lec t rons  toward 
the  "hat." Those e lec t rons  which pass through the  o r i f i c e s  a re  avai lable  t o  
ionize gas within the volume. The ions which a re  created experience a force  t o -  
w a r d  the  d r i f t  g r id  by v i r tue  o f  t he  negative f i e l d  gradient  supplied by t h a t  
gr id .  The design purpose of the  d r i f t  g r id  i s  t o  keep the  f i e l d s  ins ide  the 
"hat" low and t o  r e s t r i c t  the  g rea t e s t  acce le ra t ing  f i e l d s  t o  the region between 
the  i n l e t  o r i f i c e  and d r i f t  gr id .  I n  t h i s  way, it w a s  hoped t o  approach a mono- 
energet ic  beam i r respec t ive  of t he  point within t h e  "hat" a t  which the  ion  w a s  
created.  I n  pract ice ,  it d id  not seem t o  matter much and, i n  most runs t o  be de- 
scribed, t he  d r i f t  g r i d  w a s  s e t  f o r  maximum ion  cur ren t .  This occurred at  some 
s e t t i n g  s l i g h t l y  above ground poten t ia l ,  presumably due not only t o  the  s t ronger  
f i e l d s  t o  p u l l  the ions from the  "hat" volume, but  a l so  t o  the  focusing ac t ion  
of the  f ields.  The purpose of t he  o r i f i c e  i s  t o  provide a f i e l d - f r e e  space near 
t h e  i n j e c t i o n  po r t  so no f u r t h e r  def lect ion of the  ion  pa th  can occur. The i n -  
j ec t ion  p o r t  admits only those ions conforming t o  the  i n i t i a l  conditions previ-  
ously described. Upon negot ia t ing t h e  four-pole f i e l d  formed by the  rods, stable 
ions reach the  co l l ec to r  and the  t ransfer red  charge i s  t h e  current input  t o  the  
electrometer.  

Figures 6-8 a re  photographs o f  t h e  t e s t  model of t he  massenfi l ter .  
6 shows the  massenfi l ter  i n  exploded form. 
ture and ion  source s t ruc tu re  a r e  shown i n  Fig.  7. Here the  hinged fi lament 
sh i e ld  i s  e a s i l y  seen i n  t h e  open pos i t ion  t o  allow the  fi lament t o  be welded 
i n t o  place.  
t i o n  i n t o  the  vacuum housing are shown i n  Fig. 8. 

Figure 
The separa te ly  assembled rod s t ruc -  

The completed massenfil ter and co l l ec to r  s t ruc tu res  ready f o r  i n se r -  

4.4.  MASSENFILTER TEST RESULTS 

As seen i n  Sect ion 4.3> adaptation of t h e  massenfi l ter  t o  h igh-a l t i tude  r e -  
search required severa l  compromises i n  t h e  various design parameters, such as 
o v e r a l l  s ize ,  operating voltages,  e tc .  Consequently, t h e  preliminary tes ts  on 
the lzbora tory  model of the  massenfi l ter  were made f o r  the  purpose of comparing 
ac tua l  performance c h a r a c t e r i s t i c s  with those predicted by the  design equations.  
Following t h i s ,  spec i f i c  changes i n  the design parameters-chiefly the i n l e t  con- 
d i t i o n s  as determined by the in jec t ion  port-were made t o  determine t h e i r  e f f e c t s  
on the  massenfi l ter  performance. Throughout what follows, reso lu t ion  i s  defined 
on the  basis of peak width at  half-amplitude unless otherwise s t a t ed .  The poin t  
a t  which lo@ transmission is  l o s t  i s  determined when t h e  height of a given peak 
begins t o  decrease with increasing a/q r a t i o .  I n  prac t ice ,  comparisons of r e s -  



Fig.  6 .  Massenfil ter exploded view. 
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o lu t ion  were made a t  the  95% transmission poin t  f o r  a given species  s ince  t h i s  
point  could be more p rec i se ly  determined. The c r i t e r i a  of g rea t e s t  i n t e r e s t  i s  
the bes t  reso lu t ion  obtainable without s ign i f i can t  l o s s  of transmission and t h e  
maximum current  obtainable under conditions of 100% t r a k m i s s i o n  and acceptable 
reso lu t ion .  

4.4.1. Tests of  I n i t i a l  Design.--In Sect ion 4.1, t he  r a t i o  of coordinates -- 
of the apex o f  t h e  t r i angu la r  s t a b i l i t y  region w a s  given as 0.336 which is  equal 
t o  2 U/V. 
t h e  r a t i o  of U / V m  = 0.238 i s  more convenient t o  work with i n  laboratory prac- 
t i c e .  

Thus U/V i s  0.168. Since most meters are ca l ib ra t ed  i n  RMS values, 

By the  theory presented i n  Section 5 . 1  we note t h a t ,  as the r a t i o  of U / V w  
starts at a low value and approaches 0.238, the peaks should become narrower 
s ince t h e  s t a b i l i t y  region determined by the in t e rcep t  range becomes s m a l l e r .  
A t  some point  j u s t  p r i o r  t o  reaching 0.238, t he  s ide  slopes of the peak should 
merge i n t o  a t r i a n g l e  and t h e  peak value should decrease s ince  106 transmission 
is  no longer taking place.  
longer in t e rcep t s  t he  s t a b i l i t y  t r iangle ,  nothing i s  s tab le ,  and no transmission 
occurs. Figure 9 i l l u s t r a t e s  t h i s  behavior i n  the  design massenfi l ter  i n  a se r -  
i e s  of spectrograms i n  which U / V m  i s  increased from 0.20 t o  0.24 i n  f i v e  s teps .  
The right-hand peak i s  nitrogen (AMU = 28) .  
f i e d  r e s idua l  gas of approximately mass 17 (possibly OH or C & )  which appears 
whenever a new model is  f i r s t  turned on and then gradual ly  disappears with oper- 
a t ion  and pumping. It will be noted t h a t  both peaks disappear completely at 
U / V w  = 0.24. It w i l l  a l s o  be noted tha t ,  as  U / V m  i s  increased, the  lef t -hand 
slope, corresponding t o  lower mass numbers, moves t o  a much grea te r  ex ten t  than 
the  right-hand slope. This behavior follows d i r e c t l y  from Fig.  4 and the  respec- 
t i v e  angles a t  which the  mass l i n e  crosses the s t a b i l i t y  l i m i t s .  The increase 
a t  the  far l e f t  (corresponding t o  zero m a s s  number) i s  the  transmission of all 
ions down t h e  f i e l d  s ince  the  rod voltages a re  zero. Although t e s t s  have not 
ye t  been run t o  ve r i fy  t h e  assumption, the  co l l ec to r  current  a t  t h i s  point  should 
be a measure of ove ra l l  p a r t i c l e  density.  I n  t h i s  manner, it i s  an t ic ipa ted  t h a t  
one instrument can be ca l ib ra t ed  t o  yield p a r t i c l e  dens i ty  and composition. 
behavior of t h e  peak with U / V m  is graphical ly  i l l u s t r a t e d  by Fig.  10  i n  which 
t h e  c e n t r a l  spectrogram i s  a composite of the  top and bottom. Finally, ,  it w i l l  
be noted t h a t  t h e  curvature at  base and summit at  t h e  l e f t  s ide  of t h e  peaks i s  
more pronounced than the  r i g h t  s ide,  which again follows from t h e  more gradual. 
recession of  t h e  m a s s  l i n e  from the s t a b i l i t y  l i m i t  a t  t h e  low mass end as seen 
i n  Fig. 4.  

Final ly ,  beyond U/Vm of 0.238, the  m a s s  l i n e  no 

The lef t -hand peak i s  an unident i -  

The 

From Eq. (4.2.9),  t h e  maximum a t ta inable  r e so lu t ion  f o r  ni t rogen w5th an in -  
Test re- j e c t i o n  p o t e n t i a l  of 45 v o l t s  would be expected t o  be approximately 24. 

sults, however, y i e ld  a reso lu t ion  of about 18 f o r  ni t rogen a t  9596 transmission. 
This smaller value i s  probably due t o  t h e  incompatabili ty of Eqs. (4 .2 .2)  and 
(4.2.3) a l ready discussed i n  Section 4.2. The current  obtained with t h i s  model, 
normalized t o  a pressure of 1 x mm Hg w a s  0.5 x 
e l ec t ron  beam of about 2 .3  ma.  
f i c i e n t  ion  source w a s  made i n  t h i s  model.) 

amperes at  a 40-volt 
(It should be noted t h a t  no attempt toward an e f -  
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An inves t iga t ion  of the  e f f e c t  of i n j e c t i o n  voltage,  Vin, on reso lu t ion  re- 
su l t ed  i n  t h e  spectrograms of Fig.  11 which were taken a t  a r a t i o  U / V m  of 0.23. 
Since the  e l ec t ron  beam voltage w a s  the same as the  ion i n j e c t i o n  voltage through- 
out (both being derived from the  same source of p o t e n t i a l ) ,  t h e  ion  cur ren ts  var-  
i e d  considerably throughout t h i s  s e r i e s  of spectrograms and the c i r c u i t  s e n s i t i v -  
i t y  w a s  adjusted i n  each case t o  give peaks of t he  same height .  From Fig. 10, we 
i n f e r  t h a t  t he  transmission of Fig. 11 w a s  approximately 95%. It w i l l  be noted 
t h a t ,  as the i n j e c t i o n  voltage w a s  reduced the  peak narrowed somewhat. A more 
pronounced e f f e c t  i s  the sharpening of t h e  base in t e rcep t s  of the  peak which i s  
of importance i n  separat ing and ident i fy ing  adjacent masses of widely d i f f e r e n t  
abundances. A c l ea re r  i nd ica t ion  of the d i f fe rences  i n  peak shape is  given by t h e  
composite spectrogram of Fig.  12, a repeat of se lec ted  spectrograms of Fig. 11. 
I n  both f igu res ,  the s m a l l  peak at mass number 17 i s  the  r e s idua l  un ident i f ied  gas 
i n  the  system. Numerical da ta  obtained from Fig.  11 are  p lo t t ed  i n  Fig.  13. Here 
i n  graphic form, the  l a rge  percentage change i n  r e so lu t ion  as defined a t  5% peak 
amplitude is  c l e a r l y  evident as compared with the  change at  half-amplitude. 

A t  t h i s  po in t ,  it may be well  t o  note from Eq. (4 .2 .9)  t h a t  a reduction of 
I f  one wishes t o  maintain V i n  a t  45 V i n  i s  equivalent t o  lengthening t h e  rods. 

v o l t s  and have t h e  base reso lu t ion  achieved a t ,  say, 22-1/2 v o l t s ,  he can accom- 
p l i s h  t h i s  by increasing rod length by& o r  by 41%. 

I n  addi t ion  t o  the  a b i l i t y  t o  resolve masses, t he  co r rec t  reproduction of 
mass abundance i s  an important property t o  inves t iga te .  
spectrogram obtained with Ne"' and Ne2". 
of 10.8% of Ne"'. 
by a f a c t o r  of 5 t o  f a c i l i t a t e  i n  determination of the  height  of the Ne2" peak. 
The bottom spectrogram i s  a repeat  of the  top  t o  v e r i f y  absence of  d r i f t  i n  pres-  
sure  or c i r c u i t  gain.  Again, from Fig. 10 and the  U / V m  r a t i o  of 0.23 which w a s  
used, we i n f e r  t h a t  transmission i n  the spectrograms of Fig.  14  w a s  85% ( o r  be t -  
t e r  s ince  neon i s  l i g h t e r  than nitrogen and has a higher v e l o c i t y ) .  Within t h e  
l i m i t s  of observat ional  accuracy, Fig. 14 ind ica tes  t h a t  Ne"" i s  10% of Ne2'. 
d i f fe rence  between t h e  observed and handbook r a t i o  may be due t o  pon l inea r i t i e s  
i n  the  scope presentat ion,  a departure of t h e  gain increase from a f a c t o r  of 5 o r  
a v a r i a t i o n  i n  t h e  percent transmission of the two masses. 
from 10% e x i s t s ,  t h e  heavier gases w i l l  depart  f u r t h e r  than the l i g h t e r . )  Only 
about 10% of the  d i f fe rence  might be a t t r i b u t a b l e  t o  the  composition of t h e  neon 
sample i t s e l f .  

Figure 14 shows the  
Theoret ical ly ,  Ne22 e x i s t s  i n  the  amount 

I n  t h e  center  spectrogram, the  gain of the system w a s  increased 

The 

( I f  any departure 

4.4 .2. Variat ion of Design Parameters. -The e f f e c t  of i n l e t  por t  condi t ions - 
on r e so lu t ion  and cur ren t  were next invest igated.  A s  i n l e t  conditions a r e  ex- 
tended, i . e . ,  wider angles and l a rge r  po r t s  used, a l a r g e r  ion  cur ren t  w i l l  be 
achieved at  the expense of resolut, ion a t  100% transmission. 
promise between high cur ren t  and high reso lu t ion  must be made. This s e r i e s  of  

Accordingly, a com- 

t e s t s  w a s  undertaken t o  a i d  

The various i n l e t  po r t  

i n  making such 

configurations 

a compromise. 

t e s t e d  a r e  summarized i n  Table 111. 
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A s  a f i n a l  s tep ,  t he  i n j e c t i o n  po r t  diameter w a s  opened t o  0.062 i n .  and 
t e s t e d  a t  values of 0 equal t o  5" and 7.8". 
from 18 t o  13 was noted a t  5", no increase i n  ion  cur ren t  w a s  observed. 
must be used i n  t h i s  observation, however, s ince  t h e  i n l e t  po r t  configurat ion 
had t o  be changed t o  l i m i t  the angle t o  5". 
reso lu t ion  t o  8 was observed while the  peak cur ren t  increased t o  2 .8  x 10-l' am'- 
peres.  
s idered  unacceptable. 

While a l a rge  decl ine i n  r e so lu t ion  
Caution 

A t  8 = 7.8",  a f u r t h e r  decrease i n  

While the increase i n  ion  current  i s  des i r ab le ,  a r e so lu t ion  of 8 i s  con- 

A l l  these  r e su l t s  a re  shown i n  graphic form i n  Figs .  16 and 17. Resul ts  
a r e  too f e w  t o  j u s t i f y  the presenta t ion  of a curve; however, r e l a t e d  poin ts  a re  
connected by a dotted l i n e .  It does appear, however, t h a t  the o r i g i n a l  in le t  
por t  design parameters r e s u l t  i n  t he  bes t  o v e r a l l  operat ion.  
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INLET PORT CONFIGURATIONS 

Din e 
(Inches ) (Degrees) 

0.031 
0.031 

0.0145 
0.0145 

5.2 
6.5 

5.0 
2.2 

0.062 5 . 0  
0.062 7.8 

Reducing Din t o  0.0145 i n .  w h i l e  maintaining 8 a t  5" r e su l t ed  i n  no appre- 
c iab le  increase i n  reso lu t ion .  
of t h e i r  former value or about i n  the  same r a t i o  as t h e  reduction i n  i n l e t  area.  
Next, a reduction i n  i n l e t  angle, 8, 2.2" r e su l t ed  i n  a s l i g h t  improvement i n  
reso lu t ion  from 18 t o  20 but m a d e  no s i g n i f i c a n t  change i n  ion  currents .  The 
inference t o  be drawn i s  t h a t  the  ion  stream impinging on t h e  center  of t he  i n -  
l e t  po r t  i s  e s s e n t i a l l y  a x i a l  i n  d i r ec t ion  although no fu r the r  evidence e x i s t s  
t o  v e r i f y  t h i s  statement. 

Ion cur ren ts  dropped t o  s l i g h t l y  l e s s  than 25% 

Since no great  gain i n  r e so lu t ion  r e su l t ed  from r e s t r i c t i o n s  of inlet  con- 
d i t i ons  below design values,  perhaps a re laxa t ion  of i n l e t  conditions w i l l  y i e ld  
a l a r g e r  i on  current  without a g rea t  s a c r i f i c e  i n  reso lu t ion .  Accordingly, the  
o r i g i n a l  po r t  was widened t o  an angle of 6.5" maintaining t h e  e x i t  diameter at  
0.031 i n .  The half-amplitude reso lu t ion  f o r  ni t rogen dropped from 18 t o  12 while 
the current  increased from 0.5 x 10-l' amperes t o  0.8 x 10-10 amperes. This con- 
f igu ra t ion ,  then,shows no promise o f  any advantage. It w a s  used, however, t o  
gather t h e  d a t a  presented i n  Fig.  15  which i l l u s t r a t e s  the  dependence of ion  cur- 
r en t  and reso lu t ion  on the  r a t i o  U / V m  and a l so  shows t h e  method by which reso-  
l u t i o n  a t  95% transmission w a s  determined. 
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Fig.  15. Massenfi l ter  reso lu t ion  and peak ion  cur ren t  as funct ions of 

gas = N 2 .  
U / V m .  D i n  = 0.031 i n . ;  8 = 6.5"; Vin = 40 volts; P = 6 x 10-5 IIIIU Hg; 



Fig .  16. Massenfilter r e so lu t ion  as a func t ion  of i n l e t  p o r t  configuration. 
Vin = 40 Volts; gas = N2. 
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I n  summary, then, it appears t h a t  t h e  i n i t i a l  design is p e r f e c t l y  adaptable 
t o  f l i g h t .  Essen t i a l ly  the  same values of 0 and D i n  w i l l  be used i n  the  f l i g h t  
model. Aside from changes i n  t h e  ion iz ing  sec t ion  t o  be described and changes 
i n  mechanical d e t a i l ,  t he  only change an t i c ipa t ed  i n  t h e  f l i g h t  design may be a 
50% increase i n  rod length  t o  obta in  better r e so lu t ion  at  the  base of t h e  peak 
as discussed e a r l i e r .  

4.5.  FLIGHT MODEL DESIGN 

Translation of labora tory  r e s u l t s  t o  a f l i g h t  model design has been i n i -  
t i a t e d .  The massenfi l ter  may be divided i n t o  roughly four  sections-the co l l ec -  
t o r ,  the analyzing sec t ion ,  the  ion iza t ion  volume, and the  e l ec t ron  source. A t  
present ,  a f u r t h e r  i nves t iga t ion  of the lat ter two appears t o  o f f e r  t he  b e s t  
promise of increased sens i t iv i ty-h ighes t  r a t i o  of ion  cur ren t  t o  ambient dens i ty .  

4.5.1. Ionizat ion Volume.-Two major improvements i n  the  design of t he  ion- 
i z a t i o n  volume appear possible  at t h i s  wr i t ing .  I n  the  present  labora tory  design, 
a l a rge  f r a c t i o n  of t h e  ava i lab le  e lec t rons  a r e  probably impinging d i r e c t l y  on 
the  "hat" ra ther  than f a l l i n g  through the  o r i f i c e s  i n t o  the  volume where usefu l  
ion iza t ion  can occur. 
trons.  t o  t he  axis of t he  instrument where the c rea ted  ion  has the  g r e a t e s t  prob- 
a b i l i t y  of a r r iv ing  a t  the  i n l e t  po r t  within t h e  necessary r e s t r i c t e d  i n l e t  con- 
d i t i ons .  The second major poss ib le  improvement l i e s  i n  designing the ion iza t ion  
source t o  focus more e f f e c t i v e l y  those ions t h a t  are formed on the  i n l e t  o r i f i c e .  

I n  addi t ion ,  no attempt has been made t o  focus these e l ec -  

The f l i g h t  model w i l l  replace the  "hat" and o r i f i c e  arrangement used i n  the  
labora tory  design with a volume enclosed by a f i n e  g r id .  
should r e s u l t :  more e f f i c i e n t  u t i l i z a t i o n  of t h e  e l ec t rons  emitted by t h e  f i l a -  
ment s ince a grea te r  f r a c t i o n  w i l l  en t e r  t h e  ion iz ing  volume, and a major reduc- 
t i o n  i n  the p robab i l i t y  of a neu t r a l  molecule experiencing a c o l l i s i o n  with the  
apparatus p r i o r  t o  being ionized. This l a t te r  poin t  will be discussed i n  more 
d e t a i l  i n  a l a t e r  sec t ion .  I n  addi t ion,  c y l i n d r i c a l  symmetry w i l l  focus t h e  
e lec t rons  on the axis where ion iza t ion  i s  most e f f i c i e n t  from a s e n s i t i v i t y  
standpoint.  

Two d i s t i n c t  advantages 

Direct ion of t h e  c rea ted  ions t o  the  inlet p o r t  i s  t o  be accomplished by 
the use of t h e  cy l ind r i ca l  l e n s  system common t o  cathode-ray-tube e l ec t ron  guns. 
I n  t h i s  manner, a g rea t e r  percentage of t he  c rea t ed  ions w i l l  reach t h e  i n l e t  
po r t  within t h e  l i m i t e d  i n l e t  conditions demanded by t h e  analyzing sec t ion .  

Preliminary work along these  l i n e s  has been i n i t i a t e d .  Figure 18 i s  a view 
of t h e  chmponents of t he  c y l i n d r i c a l  l e n s  system cu r ren t ly  under t e s t .  The e l ec -  
t r o n  accelerat ing g r id  can be seen on the  near  end of t he  cy l inder  loca ted  second 
from the l e f t .  Assembled, t h i s  g r i d  i s  coaxia l  with a c i r c u l a r  f i lament  around 
the  outs ide.  The two cyl inders  t o  the  r i g h t  a r e  sec t ions  of the l e n s  system and 
the  s m a l l  d i sks  comprise a s l o t t e d  co l l ec to r  so designed t o  f a c i l i t a t e  i n  de t e r -  
mining beam cross sec t ion .  The l a r g e  cy l inder  on the  l e f t  se rves  as a f i lament  





sh ie ld  and has been incorporated f o r  experimental reasons. 
model i s  considered unlikely.  The s l o t s  which are apparent i n  the  l a r g e r  cyl inders  
are only f o r  t h e  purpose of r e s t r i c t i n g  heat  flow from t h e  fi lament t o  t h e  Teflon 
mounting p l a t e .  

Its need i n  t h e  f l i gh t  

The uni t  has been assembled and i s  cu r ren t ly  under t e s t .  Resul ts  w i l l  be r e -  
ported a t  a future  date.  For reasons t o  be discussed, the f i n a l  design w i l l  re- 
place t h e  s o l i d  cyl inders  with g r id  s t ruc tu res .  

4.5.2. Electron Source.:-A l a r g e  increase i n  ion  current  as a funct ion of 
ambient pressure can obviously be r ea l i zed  by increasing the  e l ec t ron  emission. 
The laboratory massenfi l ter  has been operated a t  about 2.3-ma emission and a fac-  
t o r  of t e n  should be e a s i l y  r ea l i zab le .  Two of the  important proper t ies  of t he  
fi lament are the necessary heating power and the  behavior i n  an environment con- 
t a in ing  oxygen. 

Under the  dynamic conditions of f l ight ,  l o s s  of oxygen by chemical combina- 
t i o n  with t h e  filament i s  not considered detr imental  i n  i t s e l f .  Indeed, any 
nacent oxygen which impinges on a surface p r i o r  t o  ion iza t ion  w i l l  give r i s e  t o  
an erroneous composition determination due t o  recombination. I n  a laboratory 
system f o r  ca l ib ra t ion  and t e s t  purposes, however, a fi lament which r eac t s  a t  
the slowest possible r a t e  with oxygen i s  highly des i rab le .  I n  e i t h e r  case,  con- 
tinuous operation of t he  fi lament under ambient conditions i s  mandatory. 

I n  the work heretofore  reported,  tungsten f i laments  were used as the  source 
of e lec t rons .  A t  operating temperatures, t he  W03 formed b y  chemical r eac t ion  
evaporates of f  t he  fi lament.  Hence any gas i s  quickly depleted of i t s  oxygen 
content,  so tha t ,  at the  pressure used, only temporary e f f e c t s  on the  emission 
cha rac t e r i s t i c s  have been noted. Present ly ,  experiments a re  underway t o  inves- 
t i g a t e  the  comparative power requirements and oxidat ion proper t ies  of tungsten 
and thoria-coated iridium fi laments .  Initial results ind ica t e  t h e  iridium f i l a -  
ments l o se  emission c a p a b i l i t i e s  t o  a g rea t e r  ex ten t  but recover i n  a shor t e r  
time than tungsten. It i s  f e l t  t h a t  emission regula t ion  by f i lament  tempera- 
t u re  w i l l  subs t an t i a l ly  compensate f o r  the  changes i n  work funct ion,  so t h a t  t he  
advantages of thoria-coated i r idium need not be foregone. These advantages are 
much lower heating power per milliampere emission cur ren t  and continuous opera- 
t i o n  a t  r e l a t i v e l y  high oxygen p a r t i a l  pressures  without f a i l u r e .  Tests a r e  con- 
t inu ing  and w i l l  be reported i n  g rea t e r  d e t a i l  i n  a subsequent repor t .  

4.6. ADVANTAGES 

A rocket-borne instrument should be l i g h t  i n  weight. Obviously, too,  it 
should be r e l i a b l e .  I n  general ,  t h i s  implies that it should be simple t o  bu i ld  
and operate.  I f  the instrument i s  t o  be used synopt ica l ly ,  these  c h a r a c t e r i s t i c s  
become mandatory. 

Within t h i s  frame of reference,  ana lys i s  of t he  theory and r e s u l t s  of the  
labora tory  experiments ind ica te  the  following advantages possessed by the  m a s s  - 
enf i l t e r  : 
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(1) 
(2)  Simple, rugged construction. 
(3) 

(4) 

(5 ) Simple supporting c i r c u i t r y .  
(6)  
(7 )  

L i g h t  i n  wieght s ince  it requires no magnetic f i e l d .  

Reliable and repeatable  operation without requir ing constant and 
meticulous a t t e n t i o n  t o  de t a i l .  
S e n s i t i v i t y  expected t o  be comparable t o  t h e  best so far obtained 
i n  nonmagnetic mass spectrometers, assuming an e f f i c i e n t  i on  source. 

Rela t ive ly  in sens i t i ve  t o  s m a l l  per turbat ions.  
Resolution increases  with mass number where it i s  most needed. 

I n  addi t ion,  t he  massenfi l ter  has the  a b i l i t y  t o  work t o  comparatively high 
dens i t i e s  which i s  very des i rab le  i n  t h i s  p a r t i c u l a r  appl icat ion.  
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5. OMEGATRON 

5.1. PRINCIPLE OF OPERATION 

Although a b r i e f  elementary descr ipt ion of the  omegatron appeared i n  19499 
and a discussion of the  use of resonance absorption techniques t o  de t ec t  res- 
onant ions i n  the omegatron appeared i n  1950,10 the  first comprehensive a r t i c l e  
with an ana lys i s  of omegatron operation appeared i n  1951.11 Subsequent a r t i -  
~ les ’*’~5  dea l  with t r a j e c t o r y  analysis  and appl ica t ions  of t he  omegatron. The 
pe r t inen t  theory,  taken from the  above references,  i s  presented i n  an appendix 
f o r  t he  convenience of the  reader. 

5.2. DESIGN AND PRELIMINARY TEST 

Using the  Bennett mas ;  spectrometer, Meadows and Townsend16 report  a n  ana- 
lysis of n e u t r a l  gases above WSPG ranging between mass numbers 14  and 44. 
This, then, w a s  se lec ted  as the minimum range over which any ana lys i s  should 
be considered. Nowhere i n  t h i s  range are any two gases any c l o s e r  than 2 AMU 
with the  exception of CO, and N20. Thus a reso lu t ion  of 20 should be adequate 
f o r  analyzing the  cons t i tuents  of the upper atmosphere. The omegatron may 
reasonably be expected t o  operate t o  dens i t i e s  where the  mean f r e e  path and 
o r b i t a l  pa th  lengths a= of the  same order of magnitude. Using the  mean f r e e  
pa th  of 10 cm from Table I at  100 km ( the  lowest a l t i t u d e  spec i f i ed  i n  the 
work s ta tement)  and a reso lu t ion  of 20, Eq. ( A l 7 )  y i e lds  a value of 2.5 mm 
f o r  Ro. 
working conditions a r e  summarized i n  Table I V .  

Based on t h i s  value and an assumed f l u x  dens i ty  of 3000 gauss, the 

TABLE I V  

OMEGATRON WORKING PARAMETERS” 

T.1 Mass No. i M n EO f t 

loo 128 

- 
( A m  (em) AM (r‘evs) (mv/cm) (kc)  ( (psec)  (ev)  

0.59 46 10 20 12.7 117 
14 10 20 12.7 385 328 39 1.93 
1 10 20 12.7 5390 4600 2.8 27 

*Ro = 0.25 cm; B = 3000 gauss. 

35 



To approximate the  uniform e l e c t r i c  f i e lds  assumed i n  the i r  t h e o r e t i c a l  
development, Hipple, Sommer, and Thomas'' formed t h e  cubic analyzing volume 
of t h e i r  omegatron wi th  a series of guard r ings  a t  each end of which w e r e  
located the rf p la t e s .  The rf voltage w a s  equa l ly  divided across  t h e  guard 
rings.  Unless accurate  co r re l a t ion  with t h e  theory i s  required,  however, 
simple workable omegatrons have been constructed by o ther  workers13-'5 by u s -  
ing a simple cubic s t ruc tu re ,  e l imina t ing  the  guard r ings  and accepting the  
nonuniform e l e c t r i c  f i e l d  gradients .  Such w a s  t h e  construct ion selected;  it 
i s  i l l u s t r a t e d  i n  Fig.  19. Here, e lec t rons  a re  obtained by thermionic emis- 
s ion  from the  tungsten f i lament .  Those which a re  emit ted a t  the  axis of t he  
instrument proceed down the  magnetic f i e l d  through the  holes  i n  the  box and 
f i n a l l y  impinge on the  anode. Adjustment of the  beam con t ro l  p l a t e  voltage 
regula tes  t h e  beam curren t .  Ions c rea ted  on the  a x i s  by the  e l e c t r o n  beam 
are ac ted  upon by the rf f i e l d  c rea ted  by the p l a t e s  and those which are i n  
resonance reach the  c o l l e c t o r  and a re  measured by t h e  electrometer .  To 
r e p e l  t he  ions from the  ends of t he  box,a small pos i t i ve  "trapping" voltage,  
t y p i c a l l y  a few t en ths  of a vo l t ,  i s  appl ied  t o  the box. 

1 

The o r ig ina l  u n i t  b u i l t  i n  our  labora tory  had a l l  elements supported on 
t h e i r  leads.  This proved unsuccessful due t o  the  d i f f i c u l t y  of maintaining 
proper alignment and l e d  t o  the  un i t i zed  cons t ruc t ion  shown i n  Figs .  20 and 
21. Not shown i n  these  f i g u r e s  i s  the c o l l e c t o r  which w a s  supported by the  
g l a s s  tubulat ion and pro jec ted  i n  from the  s ide .  
form a box approximately 7 mm3. 
t h i s  model were inconclusive owing t o  t h e i r  h ighly  var iab le  nature .  Figure 
22 i l l u s t r a t e s  t h e  type of spec t r a  obtainable wi th  t h i s  un i t .  The mass sca l e  
of Fig. 22 i s  derived from Eq. ( A 3 )  using the measured value of 2750 gauss 
f o r  f l u x  density. The gas w a s  n i t rogen  and the  l ack  of r e so lu t ion  and t h e  
erroneous loca t ion  of t he  peak i s  self  evident .  Inadequate sh ie ld ing  of t he  
ion volume from surface charges accumulating on the  g l a s s  w a l l s  w a s  suspected 
as a major reason f o r  these  d i f f i c u l t i e s .  
enclosed model shown i n  Fig.  23. The c o l l e c t o r  protruded through the  s l o t  
v i s i b l e  i n t h i s  f igure .  I n  t h i s  manner tes ts  of a r i g i d  model of f l i g h t  d i -  
mensions were i n i t i a t e d .  

The rf p l a t e s  and end f aces  
Ro was ad jus ted  t o  2.5 mm. Resul ts  wi th  

T h i s  l e d  t o  t h e  cons t ruc t ion  of t he  

I n  support of t h e  program, the  Reuter-Stokes Company, Cleveland, Ohio, 
was contracted t o  bu i ld  a f u l l y  shielded omegatron (Fig.  24) i n  which the  e le -  
ments w e r e  supported by t h e  leads. 
from the  un i t  of Fig.  23. 
s ion  current  was ava i l ab le  i n  the  beam, presumably because of misalignment Of 

the  holes. Nevertheless, a ser ies  of t e s t s  w a s  made which y ie lded  r e s u l t s  
comparable with those obtained from the  o the r  omegatrons a t  t h a t  t i m e .  The 
spectrum obtained for helium i s  shown i n  Fig.  25 and those f o r  neon, ni t rogen,  
and argon i n  Fig. 26. The small peak a t  12-13 mass u n i t s  i n  Fig.  26 i s  pre-  
sumed t o  be due t o  doubly ionized nitrogen. 
l a t t e r  two f igu res  i s  s t i l l  inadequate, it i s  s i g n i f i c a n t l y  b e t t e r  than  t h a t  
obtained with the f irst  model. 
between the theo re t i ca l  mass sca l e  and the  pos i t i on  of t he  peaks. 

Other f e a t u r e s  differed only i n  d e t a i l  
Only a small f r a c t i o n  of t he  t o t a l  f i lament  e m i s -  

While the  r e so lu t ion  i n  these  

I n  addi t ion,  t h e r e  i s  much b e t t e r  a g r e e w n t  
Table V 
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Fig. 26. Ne, N2, and A spectrum, commercial omegatron. 
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compares 
F igs .  25 and 26. 

t he  r e so lu t ion  determined from Eq. ( A l 3 )  with t h a t  estimated from 

TmLE V 

COMPARISON OF EXPERIMENTAL AND PREDICTED RESOLUTIONS 

M 
AM 

- M (Figs.  25 and 26) - [Eq* ( A 1 3 ) 1 *  AM Gas 

Helium 19.6 
Ne on 3.9 
Nitrogen 2.8 
Argon 2.0 

11.6 
2.2 
2.6 
2.9 

*Eo = 1.16 volts/cm 
PT = 2 x IMII Hg 
B = 2750 gauss 
Ro = 0.25 cm 

5.3. TESTS OF FINAL MODEL 

Most of the t e s t s  were run on the  model of Fig. 23. I n  these  t e s t s  a num- 
b e r  of parameters were var ied  such as magnetic f l u x  dens i ty  and d i r ec t ion ;  Eo 
and the  manner of app l i ca t ion  (single-ended d r ive  t o  e i t h e r  p l a t e  and balanced 
d r i v e ) ;  e lec t ron  beam curren t ;  trapping, anode and beam con t ro l  voltages; 
d r i f t  voltage; pressure of t he  gas sample and Ro. 
p e r h e n t a t i o n ,  it w a s  determined t h a t  bes t  r e s u l t s  were obtained with an e l e c -  
t r o n  beam of 2 t o  3 microamperes and 45 v o l t s  energy, with a t rapping  p o t e n t i a l  
of approximately 0 .3  vo l t ,  with a single-ended rf dr ive  t o  a p l a t e  which de- 
pended on the  magnetic f i e l d  d i r ec t ion ,  with t h e  h ighes t  magnetic f l u x  dens i ty  
(4300 gauss i n  t h i s  case)  and with anode and e l e c t r o n  beam con t ro l s  a t  box po- 
t e n t i a l .  
e f f e c t  on the  performance of t he  analyzing s e c t i o n  i f  t h e  e l e c t r o n  beam cur ren t  
i s  ad jus ted  t o  t h e  prescr ibed  values. I n  p rac t i ce ,  however, t he  p o t e n t i a l s  of 
t h e  beam cont ro l  e lec t rode  and t h e  anode had a s i g n i f i c a n t  e f f e c t  on t h e  spec t r a  
obtained presumably because of t he  r a d i a l  f i e l d s  which protruded i n t o  the  box 
through the  adjacent holes. 

Following considerable ex- 

Theoretically,  t he  p o t e n t i a l  of these  two e l ec t rodes  should have no 

Reference (14 )  shows t h a t  t he  resonant frequency of an ion subjected t o  
an add i t iona l  r a d i a l  e l e c t r i c  f i e l d  i s  given by 

eB 
clrr = m - g  (503.1) 
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r i s  t h e  t r a j e c t o r y  radius  a t  any in s t an t ,  
cur i s  t he  angular  resonance frequency a t  radius r, and 
E, i s  t h e  radial  e l e c t r i c  f i e l d  s t rength  a t  radius  r. 

Thus, unless  E r / r  i s  a constant or the e n t i r e  second term i s  negl ig ib le ,  t he  
instantaneous resonant frequency of an ion  is  a var iab le  func t ion  of i t s  or-  
b i t a l  radius.  T h i s  term, therefore ,  not only r e s u l t s  i n  an apparent mass 
s h i f t  b u t  sets  an upper l i m i t  on the a t t a inab le  resolut ion.  This comes about 
s ince,  a t  l o w  Eo, an ion en te r ing  a resonant s p i r a l  pa th  a t  the  cen te r  be- 
comes nonresonant a t  l a r g e r  radii ,  gets out of phase, r e t u r n s  t o  a smaller  
radius ,  and never reaches the  co l lec tor .  Equation (5.3.1) ind ica tes  t h e  rela- 
t i v e  e f f e c t s  are g rea t e r  a t  high mass numbers. For  example, a 1 6  change i n  o 
f o r  argon occurs when E r / r  i s  only 2 vol t s  cm2-a value e a s i l y  reached i n  the  
v i c i n i t y  of the  holes when the  adjacent e l ec t rodes  are operated a t  po ten t i a l s  
s i g n i f i c a n t l y  removed from box poten t ia l .  Argon ion cur ren t  i s  p l o t t e d  against  
t he  appl ied  rf voltage i n  Fig.  27 and exh ib i t s  a d e f i n i t e  cutoff  value undoubt- 
e d l y  a t t r i b u t a b l e  t o  the  radial  f i e l d ,  ' 

The second t e r m  of Eq. (5.3.1) has two o ther  cont r ibu t ing  sources. The 
f i r s t  of these  i s  the  space charge which r e s u l t s  from the  e l ec t ron  beam and 
cloud of nonresonant ions near  the axis .  Being the  slower p a r t i c l e s ,  the ion 
cloud i s  the  major e f f e c t .  The r ad ia l  f i e l d  s t r eng th  i s  inverse ly  proport ional  
t o  r, so  t h e  second t e r m  va r i e s  as l/$. For  t h i s  reason, i n  p r a c t i c a l  opera- 
t i on ,  the ion cloud i s  minimized by using an e l ec t ron  beam i n  the  neighborhood 
of microamperes. Attempts t o  sweep the volume of charge cont inua l ly  by the  
d r i f t  voltage,  discussed i n  Sect ion C of the  Appendix, yielded only negative 
r e s u l t s .  

The second cont r ibu t ing  source arises from the t rapping voltage. While 
t h i s  p o t e n t i a l  i s  intended only t o  prevent a x i a l  loss of ions,  it a l s o  gives 
r ise  t o  r a d i a l  f i e l d  components. The upper value of t rapping voltage i s  un- 
doubtedly l imited by t h i s  e f f e c t  s o  t h a t  one f inds  an optimum i n  the  v i c i n i t y  
of a f e w  t en ths  of a vo l t  which is j u s t  s u f f i c i e n t  t o  overcome thermal ener- 
g i e s .  
p l o t t e d  as a funct ion of rf dr ive  voltage. It w i l l  be noted t h a t  t he  rf "cut-  
off"  vol tage increases  wi th  t rapping voltage but  t h e  s lope of curves a l s o  in-  
c reases  s o  t h a t  higher  peak ion currents  are obtained wi th  moderate t rapping 
vol tage at properly se lec ted  dr ive  voltages. 

Figure 28 i l l u s t r a t e s  t he  e f f e c t  of t rapping voltage on ion  cur ren ts  

F igures  29 and 30 i l l u s t r a t e  some of the  bes t  spec t r a  obtained with the  
omegatron operated under c a r e f u l l y  optimized condi t ions and a magnetic f l u x  
d e n s i t y  increased t o  4300 gauss. The observed r e so lu t ion  of the  helium peak 
of Fig.  29 i s  35 while the value predicted by Eq.  ( A 1 3 )  i s  46. 
r e so lu t ions  f o r  neon, argon, and t h e i r  isotopes and those observed from Fig .  
30 are given i n  Table V I .  

The predicted 
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Peak ion  cur ren ts  as functions of Eo at  various t rapping vol tages .  
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TABLE V I  

COMPARISON OF EXPERlMENTAL AND PmDICTED FESOLUTIONS 

M - (Fig. 30) 
AM 

M - [Eq. ( A 1 3 ) 1 *  
AM Gas 

Ne2' 
Ne22 
A36 
A4 

13.9 
12.6 
7.7 
6.9 

26 
31 
25 
9.3 

*Eo = 0.8 volt/cm 
PT = 1.3 x lom5 mm H g  
B = 4300 gauss 
Ro = 0.25 em 

The g r e a t e r  magnitude of the observed va lues  of reso lu t ion  compared with 
predicted values are probably due t o  e i t h e r  or a combination of t he  following 
causes : 

a. Due t o  the cutoff  cha rac t e r i s t i c s  evident  i n  Figs .  27 and 28, t he  
spec t ra  of Fig.  30 are i n  r e a l i t y  only the  top  por t ion  of the peaks which 
would be seen i n  the  absence of the  cutoff cha rac t e r i s t i c .  Hence, t he  base- 
l i n e  in t e rcep t  dis tance is  e f f ec t ive ly  reduced, y ie ld ing  apparently higher  
reso lu t ion .  One would expect the smaller peaks would show the  g rea t e s t  ap- 
parent improvement as evidenced by Ne22 and A36 i n  Table V I .  

b. Since the  omegatron e l e c t r i c  f i e l d s  depart  considerably from the  u n i -  
form f i e l d s  assumed i n  the der ivat ion which l e d  t o  Eq.  ( A l 3 ) ,  the  ions may gain 
l e s s  energy per  cycle from the rf f i e l d  than  the  theory ind ica tes ,  make more 
revolut ions,  and have higher  resolutions.  With the  physical  configurat ion of 
t he  omegatraon, t he  f i e l d  a t  the axis i s  l e s s  than t h a t  obtained on the  as- 
sumption of a uniform f i e l d .  The same e f f e c t  i f  noted i n  Fig. 31 i n  which ob- 
served reso lu t ion  of Ne20 as a function of E o  i s  p l o t t e d  and compared with 
predicted values. While the observed values are everywhere higher, t he  gen- 
erg1 shapes of the  two curves are  similar. 

Returning t o  F ig .  30, we note t h a t  the Ne22 peak is  about 3.7% of the  Ne2' 
peak and the  A36 peak i s  about 0.4% of the  A40 peak. 
approximately 11% and Oe3$, respectively.  
able  of why argon i s  approximately correct  while neon i s  i n  e r r o r  by a f a c t o r  
of 3. 

The known r a t i o s  are 
No explanat ion i s  r ead i ly  avai l -  
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5.4. CONCLUSIONS 

The chief advantage of the  omegatron i s  i t s  t h e o r e t i c a l  a b i l i t y  t o  achieve 
high resolut ions,  p a r t i c u l a r l y  at low mass numbers, with a device of simple con- 
s t ruc t ion .  
vantages may be tabula ted  as follows: 

Fromthe  t e s t  r e s u l t s  described i n  the  e a r l i e r  sect ion,  the disad- 

A. Theoret ical  

a. Decrease of reso lu t ion  with increasing mass number a t  
cons t a u t  E 0. 

b. Since the ions are created on the ax i s  of t he  magnetic 
f i e l d ,  the  pole faces  place a l i m i t  on reducing the 
p robab i l i t y  of recombination of ambient molecules at the 
s u r f  aces of the apparatus. 

B . Ope r a t i o n a l  

a. Ideal ized e l e c t r i c  f ie lds  a re  not obtainable with simple 

b. Only the  resonant ions a re  removed. The remainder c rea te  
e lec t rode  s t ruc tures .  

r a d i a l  f i e l d s  which adversely e f f e c t  operation. 

The "operation" disadvantages give r i s e  t o  a number of undesirable e f -  
f e c t s  among which are inaccurate abundance r a t i o s  as ind ica ted  by peak heights,  
a l i m i t a t i o n  on the ul t imate  resolut ion obtainable and e r r a t i c  behavior. These 
a l l  s t e m  d i r e c t l y  from the  low energies involved (see  Table I V ) ,  p a r t i c u l a r l y  
a t  the  higher  mass numbers. 
i m u m  reso lu t ion  [Eq. (Al")], the  only way i n  which the  energy can be increased 
[Eq. (A18)] i s  by increasing the  f l u x  densi ty ,  which requires  more magnetic 
mater ia l  r e su l t i ng  i n  increased weight. 

Since R, i s  f ixed  by the  maximum dens i ty  and min- 

A t  these low energies ,  unsymmetric e l e c t r i c  f i e l d s  ins ide  the  omegatron 
a r i s i n g  from contact,  po ten t i a l s  se r ious ly  d i s t u r b  the  operation. The source 
of these  contact po ten t i a l s  i s  assumed t o  be oxides and o the r  contaminants 
on the  omegatron surfaces  which give r i s e  t o  surface work funct ion d i f f e r -  
ences which can r e s u l t  i n  p o t e n t i a l  differences of a v o l t  or more. I n  an at-  
tempt t o  e l iminate  or reduce t h i s  possible source, t he  u n i t  w a s  induction- 
heated i n  a hydrogen atmosphere. Performance w a s  degraded, presumably be- 
cause the  s t ruc tu re  d id  not permit uniform heat ing and because of add i t iona l  
contamination "boiled" out of the insulators .  

A t  t h i s  point ,  work on the  omegatron w a s  discontinued because of the 
promising performance of the massenfi l ter  a l ready described. 

It should be noted, however, t h a t  the  omegatron operates s a t i s f a c t o r i l y  
f o r  hydrogen and helium with reaonsable magnetic f i e l d  s t rengths .  
be a t t r i b u t e d  t o  the  large ionic  energies a t  the  radius  of co l l ec t ion  (Table 
I V ) .  
aboard vehicles  launched t o  analyze these l i g h t  gases. 

This can 

The omegatron may therefore  have some p r a c t i c a l  appl ica t ion  f o r  use 
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6. INSTRUMENTATION PACKAGE 

The rocket s e l ec t ed  by NASA f o r  t h i s  work and concurred i n  by The Univer- 
s i t y  of Michigan group i s  t h e  Nike-Asp. Nose cones from The Cooper Develop- 
ment Company have been received and i n i t i a l  design of t he  instrument package 
has been begun. 

A s  mentioned i n  ear l ier  sect ions,  t he  presence of la rge  s o l i d  surfaces  
from which ambient gases can be "ref lected" t o  the  ion iz ing  region can r e s u l t  
i n  la rge  e r r o r s  i n  composition measurement. This occurs s ince atomic oxygen 
can recombine t o  molecular oxygen at the surface.  To minimize these  e f f e c t s ,  
the  ionizing sec t ion  i s  designed t o  be located about fou r  inches i n  f r o n t  of 
the i n l e t  por t ,  and the  intervening cy l ind r i ca l  l ens  and e l ec t ron  acce le ra to r  
are composed of f i n e  gr ids .  I n  t h i s  manner, it i s  hoped t o  keep the  s o l i d  
angle t h e  ion source sees  subtended by s o l i d  mater ia l  i n  the neighborhood of 
1 6  or l e s s .  
b e t t e r  of reaching the ion iz ing  volume without f i r s t  co l l i d ing  with a s o l i d  
s u r f  ace. 

Thus an approaching p a r t i c l e  w i l l  have a 9C$ probab i l i t y  o r  

Another aspect of grave importance i n  the  design of an instrumentation 
package i s  the  cont r ibu t ion  of gases evolved from the  package i t s e l f  t o  the 
measurement i n  progress. The importance of t h i s  aspect  has been demonstrated 
by the long time i n t e r v a l  before the ion iza t ion  gages on Sputnik I11 reached 
ambient equilibrium. To minimize t h i s  problem, the  design of t he  complete pack- 
age places  the  pressurized instrument da ta  cy l inder  i n  an evacuated volume. I n  
t h i s  manner, the major por t ionof  occluded gases w i l l  be removed p r i o r  t o  f i r i n g  
and t h e  e r r o r s  a r i s i n g  from t h i s  source reduced by orders of magnitude, 

To el iminate  the  grea t  volumes of gas and combustion products inherent 
i n  explosive separat ions used i n  e a r l i e r  work by t h i s  group, a separat ion 
technique using the energy released on t r igge r ing  cocked spr ings i s  under de- 
velopment. 
been developed and a model has been constructed and tes ted .  

A s a t i s f a c t o r y  t r i g g e r ,  ac t iva ted  by burnout of fuse w i r e ,  has 

Figure 32 i s  a drawing which i l l u s t r a t e s  the method of separa t ing  the  
rocket  and e j e c t i n g  the da ta  cyl inder  from i t s  vacuum chamber. The massen- 
f i l t e r  i s  shown a t  the  forGarS: end of the da ta  cyl inder .  The pressurized 
d a t a  cy l inder  contains the  FM-FM telemetry t ransmi t te r ,  the  f i lament  emission 
regula tor ,  the dr iv ing  o s c i l l a t o r ,  and r e c t i f i e r  f o r  the  massenfi l ter ,  and 
the  assoc ia ted  amplitude modulator, t h e  electrometer ,  the  monitoring c i r c u i t s ,  
and t h e  power supplies.  

Data transmission is  accomplished by means of the  i l l u s t r a t e d  dipole an- 
t enna  which w a s  s e l ec t ed  over s e l f  -exc i ta t ion  of t he  da t a  cy l inder  i t s e l f  f o r  
two reasons. 
e l e c t r i c  f i e l d  s t rengths  a t  the ends where the  massenf i l te r  i s  located.  This 
i s  t o  be avoided, i f  posss ib le ,  because of the unavoidable e f f e c t s  on the ion 
t r a j e c t o r i e s .  I n  addi t ion,  the dipole p a t t e r n  w i l l  be more favorable f o r  
t ransmission t o  t h e  ground i n  the  normal o r i en ta t ion  of the da t a  capsule. 

Se l f -exc i ta t ion  of the da t a  cy l inder  would r e s u l t  i n  the  highest  
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7. ELECTRONIC CIRCUITRY 

Since the  omegatron has been dropped from considerat ion f o r  t h i s  pro jec t ,  
a d e t a i l e d  descr ip t ion  of the  asociated e l ec t ron ic  c i r c u i t s ,  used and planned, 
does not appear t o  serve any use fu l  purpose herein. Hence, t h i s  s ec t ion  de- 
s c r ibes  only the  e l ec t ron ic  c i r c u i t s  r e l a t i n g  t o  the  massenfi l ter .  I n  addi- 
t i on ,  de t a i l ed  descr ip t ions  of standard c i r c u i t r y  such as two d-c electrom- 
e t e r s ,  a balanced output rf amplifier,  e tc . ,  have been omitted. 

7.1, MASSENFILTER DRIVING OSCILLATOR AND R E C T D E R  

The rf voltage necessary f o r  operation of the massenf i l te r  i s  bes t  ob- 
t a ined  from a voltage-modulated, push-pull c i r c u i t  balanced with respect  t o  
ground. A p a i r  of d-c voltages of opposite p o l a r i t y  and constant r a t i o  with 
respec t  t o  the  rf voltages are required. 
t i o n  of the  rf voltage and ad jus t ing  the r a t i o s  by means of voltage dividers .  

These are bes t  derived by r e c t i f i c a -  

The laboratory device f o r  deriving these voltages i s  shown i n  Fig.  33 
The rf generator  i s  simply a and the  c i r c u i t  diagram i s  given i n  Fig. 34. 

tuned-grid, tuned-plate, push-pull o sc i l l a to r .  For labora tory  use ,  a mass 
sweep der ived from voltage modulation i s  accomplished by sweeping the B+ vo l t -  
age. The capaci ty  of t he  massenfi l ter  rods forms p a r t  of the  tank  c i r c u i t .  
Tuning of the  tank  i s  accomplished by use of t he  var iab le  l5O-mnrf condenser 
and balance with respect  t o  ground is  accomplished with the  two 5O-mmf con- 
densers  from each end of the tank  t o  ground. 
r e c t i f y i n g  the  rf voltage a t  each end of the  tank and impressed on the  respec- 
t i v e  rods p a i r s  through a p a i r  of i so l a t ing  2 . 5 - d  chokes. 
t o  rf voltages i s  adjustable  by means of the  200-K p o t e n t i o m t e r s  seen i n  Fig. 
34. This un i t  i s  seen as p a r t  of the laboratory t e s t  setup shown i n  Fig. 35. 

The d-c vol tages  a r e  derived by 

The r a t i o  of d-c 

For  f l i g h t  use, a crystal-control led,  master o s c i l l a t o r ,  amplitude-modu- 
l a t ed ,  power ampl i f ie r  of miniaturized construct ion i s  under ac t ive  develop- 
nent . 

7.2 EMISSION mGULATOR 

Ambient conditions,  p a r t i c u l a r l y  a t  the lower a l t i t u d e s ,  w i l l  have la rge  
e f f e c t s  on the emission cha rac t e r i s t i c s  of whatever f i lament  i s  se l ec t ed  as 
the  massenf i l te r  e l ec t ron  source. 
s ion  m u s t  be provided. Transis tor ized emission regula tors  have been described 
i n  the l i t e r a t u r e , l 7 ~ ~ ~  and a un i t  operating on these  pr inc ipa les  has been con- 
s t r u c t e d  with minor design modifications t o  adapt it t o  the  appl icat ion.  The 
c i r c u i t  diagram i s  given i n  Fig.  36 and the  labora tory  un i t  i s  shown i n  Fig., 37 
t o g e t h e r  with i t s  associated t e s t  equipment., 

Hence, some means of regula t ing  the  emis- 
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Fig. 3 3 .  Massenfilter oscillator and rectifier. 
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B t  

MASSEN FILTER OSCl LLATOR 

Fig. 34. Circuit diagram: Massenfilter oscillator and rectifier. 
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Fig. 36. C i r cu i t  diagram: emission r egu la to r .  
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Fig. 37. Emission regulator. 
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The base cur ren t  input of Q1 i s  the difference between the  emission cur- 
r e n t  of t he  regulated fi lament and t h e  cur ren t  produced by the  reference hat- 
tery i n  the  ad jus tab le  emission regulating res i s tance .  I f  t h e  emission cur- 
r en t  i s  smal le r  than the  reference current,  & w i l l  be i n  conduction and am- 
p l i f y  the  d i f fe rence  current which i s  then the  input t o  &. Trans i s to r  & i s  
a grounded c o l l e c t o r  used t o  convert the amplified output of Q1 t o  a low i m -  
pedance t o  dr ive  the  p a r a l l e l  cur ren t  regula tors ,  Q3 and &4. These l a t t e r  
t r a n s i s t o r s  i n  e f f e c t  a c t  as controllable var iab le  r e s i s t o r s  i n  the  fi lament 
c i r c u i t .  A s  long as emission cur ren t  i s  l e s s  than the  adjusted reference cur- 
r en t ,  t he  cur ren t  regula t ing  t r a n s i s t o r s  a re  i n  f u l l  conduction, de l ive r ing  
maximum hea t ing  power t o  the  filament. 
hea t ing  cur ren t  which produces the reference emission cur ren t .  

Operatioq s t a b i l i z e s  a t  the  fi lament 

A s  i s  evident from Figs.  36 and 37, i n i t i a l  t e s t i n g  of t he  c i r c u i t  w a s  
Testing accomplished using a standard 826 power r e c t i f i e r  as a dumy load. 

of t he  c i r c u i t  r e su l t ed  i n  a n  emission cur ren t  which remained within 1% of 
i t s  ad jus ted  value over a p l a t e  voltage 
over a fi lament supply battery range of from 4 t o  12 vol t s .  
t i o n  is  s t a b l e  throughout. 

range of from 22-1/2 t o  100 v o l t s  and 
The c i r c u i t  opera- 

While t h i s  c i r c u i t  i s  su i t ab le  for f l i g h t  use, it i s  i n e f f i c i e n t  s ince  a 
la rge  f r a c t i o n  of the  power drawn f r o m  t h e  filalnent supply b a t t e r y  i s  ex- 
pended i n  the  var iab le  res i s tance  by which the  regula t ing  t r a n s i s t o r s  may be 
represented. I n  addi t ion  t o  being i n e f f i c i e n t ,  t he  power d i s s ipa t ed  i n  the  
t r a n s i s t o r s  requi res  t he  heat s ink  seen i n  Fig. 37 t o  prevent a temperature 
r i s e  s u f f i c i e n t  t o  r e s u l t  i n  runaway operation. Accordingly, a regula t ion  c i r -  
c u i t  which operates t h e  filalnent cont ro l  t r a n s i s t o r s  as switches i s  under de- 
velopment. I n  t h i s  manner, power d i s s ipa t ion  i n  the  t r a n s i s t o r s  i s  a t  t he  
minimum poss ib le  value. Regulation i s  accomplished by maintaining a constant 
switching r a t e  b u t  varying the  on-off duty cycle as required. If the  switch- 
i n g  rate i s  s u f f i c i e n t l y  beyond the  temperature time constant of t h e  fi lament,  
no s i g n i f i c a n t  modulation w i l l  r e s u l t .  Any r e s idua l  modulation w i l l  be a t  a 
frequency beyond t h e  response l imi t s  of t he  massenf i l t e r  electrometer c i r c u i t  a 

Although the  i n i t i a l  version of t he  c i r c u i t  i s  under t e s t ,  t he  r e s u l t s  a r e  of 
only a preliminary nature a t  t h i s  writing. 

The standard I R I G  FM-FM telemetry system has been chosen as b e s t  adapted 
t o  t h e  requirenzents of t h e  pro jec t .  If possible,  a commercial . t r ansmi t t e r  
and ground system w i l l  be purchased. 
and r e l a t e d  components have been obtained from seve ra l  companies. 
l e c t i o n  and placement of orders, however, a w a i t  f u r t h e r  funding. 

Toward t h i s  end, da t a  on such systems 
Actual se- 

A v i s i t  t o  Wallops I s land  i n  June, 1959, disc losed  the  existence of a 
p a r t i a l  I R I G  ground s t a t i o n  the re  a t  t h a t  time and the expectancy of i n s t a l l i n g  
a permanent I R I G  t e l e n e t e r  receiving s t a t i o n  i n  the  i n d e f i n i t e  f u t u r e .  It i s  
proposed t o  use the  Wallops Island f a c i l i t i e s  as a backup t o  the  p ro jec t  sta- 
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t ion .  I n  any event, a pro jec t  s t a t i o n  is  necessary f o r  tests of the  ove ra l l  
system, including the rf l i n k  and tape recorder,  p r i o r  t o  shipment. I n  addi- 
t i o n ,  playback of f l i g h t  da t a  from magnetic tape requi res  the  use of the  en- 
tire ground s t a t i o n  except f o r  the  rece iver  and antenna. F ina l ly ,  a complete 
system i s  necessary if the expe r imnt  i s  t o  be synoptic. 

The frequency approved f o r  Wallops I s land  i n  June w a s  240.2 Mc with ad- 
F i n a l  frequency se l ec t ion  w i l l  d i t i o n a l  requests f o r  244.3 Mc and 256.2 Mc. 

be made about t h e  same time orders a re  placed. 
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8. VACUUM EQUIPMENT 

I n  support of t he  omegatron and massenfil ter t e s t  and development programs, 
a t o t a l  of f o u r  high-vacuum systemshave been constructed. Two of these  are a l l -  
g l a s s  systems, one of which is  portable.  These are shown i n  Figs.  38 and 39 
and a closeup of one appears i n  Fig. 40 t o  show t h e  mercury shut-off valves and 
t h e  l i q u i d  nitrogen t r a p s .  I n  addition, a completely dry, s t a i n l e s s - s t e e l  sys- 
tem has been purchased from Varian Associates and assembled as shown i n  Fig. 
41. Prepumping is  accomplished by the ac t iva t ed  charcoal t r a p  c h i l l e d  by l i q -  
uid nitrogen, a t  t he  bottom of the  system. Upon a t t a i n i n g  a pressure of about 
20 microns, t he  t r a p  i s  shut off o r  pinched off t h e  system and high vacua ob- 
t a ined  with the  Vac-Ion pump a t  the  top. An ion iza t ion  gage i s  mounted from 
one f lange  of t he  crossed tubula t ion  and the  instrument t o  be t e s t e d  w i l l  be 
mounted on the  remaining flange shown pinched off i n  Fig.  41. 
s a t i s f a c t o r y  operation has not yet been achieved due t o  leaks. Elimination 
of such leaks i s  i n  progress. 

Completely 

F ina l ly ,  a high-capacity o i l  d i f fus ion  pump has been f i t t e d  with demount- 
ab le  tubu la t ion  t o  a i d  i n  rap id  t e s t i n g  of design changes i n  the  massenf i l te r  
ion source. 
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Fig. 41. Stainless-steel vacuum system. 
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9. FUTURE PROGRAM 

Suff ic ien t  data indica t ing  sa t i s f ac to ry  operat ion and r e l i a b i l i t y  of t he  
massenfi l ter  have been obtained t o  commit t he  program t o  i t s  use. F l igh t  de- 
s ign  w i l l  d i f f e r  from the  prototype only i n  detai l  and t h i s  e f f o r t  i s  under- 
way. This design w i l l  be completed and three  u n i t s  w i l l  be b u i l t  and checked. 
The supporting e lec t ronics ,  a l ready underway, w i l l  be packaged f o r  f l i g h t  use. 
The major remaining items t o  be designed and developed a re  the  f l i g h t  e lec-  
trometers and the  i n - f l i g h t  monitoring and c a l i b r a t i o n  c i r c u i t r y .  The l a r g e s t  
item of equipment t o  be purchased is the telemetry system. This equipment w i l l  
be purchased with f i r s t - y e a r  money which i s  temporarily being diver ted t o  pro j -  
e c t  operating expenses i n  an t ic ipa t ion  of funds t o  ca r ry  out the  second y e a r ' s  
work. 

I n  all, three  complete airborne uni t s  w i l l  be b u i l t  i n i t i a l l y  f o r  a s e r i e s  
of f i r i n g s  t e n t a t i v e l y  scheduled f o r  the second quar te r  of 1960 at  Wallops Is- 
land.  The exact r e l a t i v e  f i r i n g  times as well  as t h e  number of those a c t u a l l y  
f i r e d  w i l l  be determined by the  degree of success enjoyed on the  i n i t i a l  rounds. 

The major problem which i s  ant ic ipated f o r  f i n a l  adaptat ion t o  synoptic use 
i s  the  manner i n  which data will be correlated with a l t i t u d e  i n  the  absence of 
t racking f a c i l i t i e s  such as are located at Wallops Island. P o s s i b i l i t i e s  i n -  
clude a simple s ing le  s t a t i o n  DOVAP-ballistic camera t r acke r  or t he  r e l a t i o n  of 
a s m a l l  range of t h e  observed da ta  t o  ambient conditions,  e i t h e r  known or inde- 
pendently measured, t o  obta in  a single a l t i tude- t ime point  from which the remain- 
der  of t h e  t r a j e c t o r y  can be computed. 
y i e ld  peak time. 
sphere experiment pioneered by t h i s  group. 
f o r  so lu t ion  of t h i s  problem, however, i n  t h e  course of t he  i n i t i a l  work of sen- 
sor development, and it has been necessar i ly  delayed f o r  t h e  fu tu re  program. 

This l a t t e r  assumes data symmetry w i l l  
A similar method has been successfu l ly  used i n  the  f a l l i n g  

Very l i t t l e  e f f o r t  has been ava i lab le  
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APPENDIX 

OMEGATRON : PRINCIPU OF OPEEATION 

Analysis of t h e  operat ing pr inc ip les  of the  omegatron has been covered i n  
the l i t e r a t u r e . 9 - l 5  For t he  convenience of t he  reader ,  t he  following presents  
the  pe r t inen t  equations and the  method by which they axe obtained. 

A. EQUATIONS 

The d i f f e r e n t i a l  equations of motion of an ion  i n  crossed rf e l e c t r i c  and 
magnetic f i e l d s  (Fig.  42) a re  

d2x - dY m - - eE s i n  W o t  + eB - 
d t2  d t  

COLLECTOR 
I 

where : 

m = i on  mass i n  grams, E SIN cyt  
x,y = coordinate dis tances  i n  cm, 

/ 

Fig.  42. Omegatron f i e l d  
coordinates.  

e = e lec t ron ic  charge i n  emu, 
E = e l e c t r i c  f i e l d  s t rength  i n  emu 

B = magnetic f l u x  dens i ty  i n  gauss. 
units, and 

Making t h e  subs t i t u t ions  

LU = eB/m 

a = eE/m 

and us ing  i n i t i a l  condi t ions (s ince the ion iz ing  e l ec t ron  beam i s  confined t o  
the  Z a x i s ) ,  

- v ,  W 0 t  = @ - -  dY dx 
d t  d t  u J  x = o ,  - =  y = O ,  

I Simultaneous s o l u t i o n  of ( A l )  and (A2) y ie lds  



1 a cos q,t - i s i n  q,t x + i y  = 
w 

Thus one can see t h a t  the  resonant ion ic  path i s  an Archimedes' s p i r a l  and the 
rad ius  increases  w i t h  t i m e  a t  a uniform r a t e .  
from the  ax is ,  charged p a r t i c l e s  w i l l  never reach it i f ,  from (AT), 

If a c o l l e c t o r  i s  loca ted  Ro 

(A9 ) E 
% ' B E  

Thus, there  i s  a c r i t i c a l  value 

E E' = - 
ROB 

f o r  which ions ju s t  reach the c o l l e c t o r .  Defining r e so lu t ion  as 

M -  w 
AM 2€ ' 
- _ -  
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3 
where V = u + iv .  

Finding the l i m i t  of (A5) as oo -t o, s u b s t i t u t i n g  E = o) - wo, neglect ing 
the  f i rs t  t e r m  due t o  i n i t i a l  ve loc i ty  ( t o  be t r e a t e d  l a t e r ) ,  and f i n a l l y  as- 
suming oo Z w and E << q,, one can obtain,  i n  the  v i c i n i t y  of resonance, 

I n  the  immediate v i c i n i t y  of resonance, Ref. 12  shows t h a t ,  a f t e r  a f e w  
revolut ions,  the pos i t i on  of an ion i s  r e l a t i v e l y  independent of the  phase angle 
of the  e l e c t r i c  f i e l d  at i t s  c rea t ion .  
p l i f i e d  t o  

Se t t i ng  $?i = 0, (A6)  can be f u r t h e r  s i m -  

E E t  r = - s i n  - 
BE 2 

A t  a frequency s l i g h t l y  of f  resonance, t he  amplitude of r w i l l  o s c i l l a t e  a t  a 
frequency of e / h  cps and w i l l  never exceed E/BE. A t  resonance, the  l i m i t  of 
(A7) as E -+ 0 yie lds  the  expression 

E t  
2B 

r = -  



(center  frequency/frequency width of base),  then 

RoB2e M 
AM 2E 2E m 

- -  - - -  M O B  _ -  

R , B ~  

Eo M = 4.8 - i n  p r a c t i c a l  u n i t s  ( u 3 )  

where, i n  (Al3) 

B = magnetic f l u x  dens i ty  i n  gauss, 

Ro = 

Eo = 
M = atomic m a s s  units. 

co l lec tor  radius  i n  em, 
peak e l e c t r i c  f i e l d  gradient i n  volts/cm, and 

It can be e a s i l y  shown t h a t  the length of an Archimedes' s p i r a l  i s  equal t o  
the  number of revolutions mul t ip l ied  by the  circumference of t he  t u r n  of average 
radius .  Thus the  path length of t he  resonant ion  a t  co l l ec t ion  i s  

where n i s  the  number of t u rns  p r i o r  t o  co l lec t ion .  Now 

and 
2 

M 2BR0 e B  Ro 
- - 2 -  

eB 
2m E E m  AM 

- - - - - - -  - 
eBt 
2 m  rcn = 

using (A8) and (Al2).  Subs t i tu t ing  ( ~ 6 )  i n t o  ( A l k ) ,  w e  have 

M L = 2R0 - 
AM 

The energy of the  resonant i on  a t  co l l ec t ion  i s  given by 

B. EFFECT OF INITIAL VELOCITY 

-b 
Equation (A5) shows t h a t  an i n i t i a l  veloci ty ,  V, of an ion superimposes a 

c i r c u l a r  motion upon the  Archimedes' s p i r a l  a r i s i n g  from the  act ion of t h e  e lec-  
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-+ 
t r i c  rf f i e ld .*  
has an angular ve loc i ty  equal t o  o), t h e  ion resonant frequency, and a rad ius  of 
IVl/o). An analysis  of t h e  e f f e c t s  of  t h e  i n i t i a l  v e l o c i t y  shows t h a t  t he  reso-  

l u t i o n  is  modified s ince  the number of tu rns  p r i o r  t o  c o l l e c t i o n  i s  changed. 
addi t ion,  t h e  maximum o r b i t a l  dimensions a re  a l s o  changed., If, as indica ted  i n  
Fig.  42, a co l l ec to r  p a r a l l e l  t o  the z -ax i s  i s  placed along the  pos i t i ve  y-axis 
a t  Ro, t he  e f f e c t s  of ? a r e  given i n  Table V I 1  f o r  severa l  d i r ec t ions  of the  vec- 
t o r  ve loc i ty .  

The c i r c l e  i s  tangent t o  the  ve loc i ty  vector  V at  the  or ig in ,  

I n  

EFFECT OF INITIAL VELOCITY 

Direction 
of Center 

Ef fec t ive  Maximum Orbital Dimensions 
M/M Along -y ax i s  Along kx a x i s  

Direct ion 

-f v = o  0 

+X 

-x 

-Y 

+Y 

RoB2e 
2mF: 

2 ROB e 
2mF: 

RO 

2v 
Ro + ; 

2v Ro - - (Ro - 5) B2e 

2mE 0 

RO 

V 
Ro + (I, 

V 

0) 
Ro - - 

The e f f ec t ive  values of r e so lu t ion  above a r e  based on those ions which a re  
c rea ted  a t  the  phase angle which r e s u l t s  i n  t h e  fewest number of revolu t ions  
while t he  maximum o r b i t a l  dimensions are independent of phase angle.  The prac-  
t i c a l  e f f e c t s  of an i n i t i a l  v e l o c i t y  a r e  t o  reduce the  e f f e c t i v e  reso lu t ion ,  de- 
pending on t h e  vector d i rec t ion ,  and t o  requi re  e lec t rode  spacings which allow 
the  ion  t o  reach the  c o l l e c t o r  before  i t s  o r b i t  c a r r i e s  it i n t o  one of t he  sur- 
faces .  

* I n i t i a l  ve loc i ty  of t he  ion i n  our  app l i ca t ion  a r i s e s  from thermal energy and 
I t h e  r e l a t i v e  motion of t he  rocket  with respec t  t o  the  ambient atmosphere. 
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C. EFFECTS OF A SUPERIMPOSED D-C FIELD 

The path of an ion  i n  crossed d-c e l e c t r i c  and magnetic f i e l d s  i s  known t o  
be a cycloid and can be expressed by the parametric equations: 

a' 
u.9 

- - (cut - s i n  u t )  Y =  

01' (1 - cos c u t )  w2 x =  

where 

at = eE'/m, 
E '  = d-c e l e c t r i c  f i e l d  gradient,  and 
u) = eB/m. 

From (Cl) and (C2) it can be noted t h a t  t he  x-axis excursion of the  ion  i s  l i m -  
i t e d  between the  values zero and 2ot/&, while it proceeds down the  negative y- 
axis a t  an averaged ve loc i ty  given by 

E '  
B 

a' eE' m 
m e B  

- = - - = -  
CD 

I n  Ref. 12, C. E. Berry suggests t h a t  t h i s  e f f e c t  can be used t o  sweep continu- 
ously a l l  nonresonant ions from the analyzing volume due t o  t h e i r  d r i f t  down t h e  
negative y-axis away from t h e  co l lec tor .  Comparing ( C 3 )  with (A81, we note t h a t  
when E ' /B  = E/2B, the  resonant ion  w i l l  not gain o r  l o s e  any dis tance toward t h e  
co l l ec to r  i n  i t s  o r b i t a l  path.  
f i ed .  
pos i t i ve  y-axis o r b i t a l  r a d i i  i s  3:l.  
twice the  dis tance of co l l ec to r  from beam axis. 

Hence, f o r  co l lec t ion ,  E '  < E/2 must be satis- 
When E '  i s  adjusted t o  E/4, f o r  example, the  r a t i o  of t he  negative t o  

Hence, i n  t h i s  case, the  e f f e c t i v e  Ro i s  

71 



REFERENCES 

1. Minzner, R. A., and Ripley, W. S., "The ARDC Model Atmosphere, 1956," A i r  - 
Force Surveys - i n  Geophysics, No. 86, 1956. 

2. Whitney, C .  A., "The St ruc ture  o f  the High Atmosphere 11. A Conduction 
Model," ---- N a t .  Acad. Sc i .  I G Y  S a t e l l i t e  Report Ser ies ,  No. 8, pp. 113-121, 
1959. 

3. Chapman, S., "The Earth i n  the  Sun's Atmosphere," -- Sci .  h e r . ,  - 201, No. 4, 
64-71 (1959). 

4. Nicolet ,  M.,  "High Atmosphere Densit ies," Science, 127, No. 3310, 1317-1320 
(1958) * 

5. Meadows, E. B.,  and Townsend, J. W. ,  "Diffusive Separation i n  the  Winter 
Nighttime Arct ic  Upper Atmosphere 112 t o  l5O Km.," N a t .  Acad. Sc i .  I G Y  
Rocket Report Ser ies ,  No. 1, pp. 107-119. Also a pr iva te  communication. 

- - - -  

6. Paul, W., Reinhard, H. P., and van Zahn, U.,  "Das e lek t r i sche  Massenfi l ter  
als Massenspektrometer und Isotopentrenner, I' Z e i t s c h r i f t  - f G r  Physik, 152 -9 

143-182 (1958). 

7. Dayton, I. E.,  Shoemaker, F. C .  , and Mozley, R. F. ,  "The Measurement of 
Two-Dimensional F i e lds .  Pa r t  11: Study of a Quadrupole Magnet," Rev. S c i .  - -  
- -  I n s t r . ,  23, No. 5, 485-489 (1954). 

8. Stoker, J. J., Nonlinear Vibrations, In te rsc ience  Publishers,  Inc. ,  N. Y., 
1950 - 

9. Hipple, J.  A., Somer,  H . ,  and Thomas, H. A.,  "A Precise Method of Deter- 
mining t h e  Faraday by Magnetic Resonance," Phys. - -  Rev., 76, No. 12, 1877- 
1878 (1949). 

10. Sommer, H., and Thomas, H. A . ,  "Detection of Magnetic Resonance by Ion Res- 
onance Absorption," Phys. Rev., 78, No. 6, 806 (1950). 

11. Somer,  H. , Thomas , H. A. , and Hipple, J. A. , "The Measurement of e/M by 
Cyclotron Resonance," Phys. Rev., 82, No. 5, 697-702 (1951). 

12. Berry, C .  E., "Ion Tra jec tor ies  i n  the  Omegatron," - -  J. Appl. Phys., 3, 
28-31 (1954). 

13. Alpert ,  D.,  and Buritz,  R.  S. ,  "Ultra-High Vacuum 11. Limiting Factors  on 
t h e  Attainment of  Very Low Pressures," - - -  J. Appl. Phys., 25, - 202-209 (1954). 

73 



14. Woodford, H- J., and Gardner, J. H. , "Method f o r  Eliminating Omegatron Ra-  
d i a l  Field Errors  o r  f o r  Direct Measurement of Mass Ratios," Rev. S c i .  I n s t r . ,  --- 
- 27, 378-381 (1956). 

15. Wagener, J. S., and Marth, P. T., "Analysis of Gases a t  Very Low Pressures 
by Using the  Omegatron Spectrometer," J. Appl. Phiys., - 28, 1027-1030 (1957). - -  

16. Meadows, E. B., and Townsend, J.  W. , "Neutral G a s  Compsition of the Upper 
Atmosphere by a Rocket-Borne Mass Spectrometer," J. Geophys. Res. , 61, 576- - - -  
577 (1956). 

17. Holmes, J. C. ,  %mission Current Regulator for Rocket-Borne Radio-Frequency 
Mass Spectrometer," Rev. --- Sci .  I n s t r . ,  28, No. 4, 290-291 (1957). 

18. Benton, H. B. ,  "Small Lightweight Ionizat ion Gauge Control Ci rcu i t ,  I t  Rev. - 
-- Sei. I n s t r . ,  - 30, No. 10, 887-888 (1939). 

74 

~ 


